1. [~S v ~(~T • ~U)] Premise
2.: [~S v (T v U)] Conditional Proof (CP) #1, 1, DeMorgan's (DeM)
3.: [(~S v T) v U)] 2, Associative Property (ASSOC)
4.: [(S —> T) v U)] 3, Relation of Implication (IMPL)
5.: [U v (S —> T))] 4, Commutative Property (COMM)
6.: [~U —> (S —> T)] 5, IMPL
7.:: S —> T CP #2, assumption #1
8.:: ~T CP #2, assumption #2
9.:: ~S 8,7 Modus Tollens (MT)
10.:: (S —> T) == (~T —> ~S) 7-9, CP #2 (shows logical equivalence)
11.: [~U —> (~T —> ~S)] 6,10 logical equivalence
12. [~S v ~(~T • ~U)] —> [~U —> (~T —> ~S)] 1-11, CP #1