There is this logical equivalence, given in many tables where they include equivalences involving conditionals:
(A—>X) & (A—>Y) == A—>(X&Y)
So we can write
1. A —> (B—>D)
2. A —> (C—>F)
3. (A—>(B—>D)) & (A—>(C—>F)) 1,2 Conjunction (CONJ)
4. A —> ((B —> D) & (C —> F)) 3 Logical equivalence
———————————————————
Conditional Proof for comparison:
1. A —> (B —> D) Premise
2. A —> (C —> F) Premise
3. :: A Conditional Proof assumption
4. :: B —> D 3,1 MP
5. :: C —> F 3,2 MP
6. :: (B —> D) & (C —> F) 4,5 CONJ
7. A—>((B —> D) & (C —> F)) 3-6 Conditional Proof