SOLUTION: Solve use reductio ad absurdum 1. ~P→(R∙S) 2. ~Q→(R∙T) 3. ~(S∨T) ∴ P∙Q

Algebra ->  Proofs -> SOLUTION: Solve use reductio ad absurdum 1. ~P→(R∙S) 2. ~Q→(R∙T) 3. ~(S∨T) ∴ P∙Q       Log On


   



Question 1117150: Solve use reductio ad absurdum
1. ~P→(R∙S)
2. ~Q→(R∙T)
3. ~(S∨T) ∴ P∙Q

Answer by math_helper(2461) About Me  (Show Source):
You can put this solution on YOUR website!

1. ~P —> (R*S) Premise
2. ~Q —> (R*T) Premise
3. ~(SvT) Premise [ Use RA to show (P*Q) ]
——
Ok, so we assume ~(P*Q) and show this leads to a contradiction (ANY contradiction).
Once we get a contradiction, we can conclude ~~(P*Q) and then use Double Negation Elimination to get the ultimate conclusion P*Q.
Start a subproof for the Reductio ad Absurdum (RA) portion...
——
4. | ~(P*Q) RA assumption
5. | ~P v ~Q 4, DeMorgan's (DeM)
6. | (R*S) v (R*T) 5,1,2 Constructive Dilemma (CD)
7. | ~S * ~T 3 DeM
8. | ~S 7 AND eliminations (aka &E)
9. | ~R v ~S 8 ADDition (aka vI)
10. | ~(R*S) 9 DeM
11. | ~T 7 &E
12. | ~R v ~T 11 ADD (vI)
13. | ~(R*T) 12 DeM
14. | ~(R*S) * ~(R*T) 10,13 Conjunction
15. | ~[(R*S) v (R*T) ] 14 DeM (contradicts line 6, ends subproof)
16. ~~(P*Q) 4-15 RA
17. P*Q 16 Double Negation Elimination (DNE)