I think ADD will be too simple to make the proof work. Certainly more steps will be required after you use ADD. The proof below works (there may be other non-conditional proofs as well):
1. X—>Y Premise
2. (Y v ~X) —> (Y—>Z) Premise
3. Y v ~X 1, Material Implication (MI) [ (A—>B) <—> (~A v B) and (~A v B ) <—> (B v ~A) ]
4. Y—>Z 3,2 Modus Ponens (MP)
5. :: ~Z Condition Proof (CP) assumption
6. :: ~Y 5,4 Modus Tollens (MT)
7. :: ~X 6,3 Disjunctive Syllogism (DS)
8. ~Z —> ~X 5,7 CP (done)