Question 1089639: ~(Z v Y) → ~W, ~U → ~(Z v Y), (~U → ~W) → (T → S), S → (R v P), [T → (RvP)] → [(~R v K) • ~K], therefore, ~K
Answer by math_helper(2461) (Show Source):
You can put this solution on YOUR website!
1. ~(Z v Y) → ~W Premise
2. ~U → ~(Z v Y) Premise
3. (~U → ~W) → (T → S) Premise
4. S → (R v P) Premise
5. [T → (RvP)] → [(~R v K) • ~K] Premise
{ To show conclusion: ~K }
———————————————————————————————
::6. ~U Assumption, start of Conditional Proof (CP)
::7. ~(Z v Y) 6,2 Modus Ponens (MP)
::8. ~W 7,1 MP
9. ~U→~W 6-8, CP
10. T→S 9,3 MP
11. T→(R v P) 10,4 Hypothetical Syllogism (HS)
12. (~R v K) • ~K 11,5 MP
13. ~K 12 Simplification (Simp), conclusion
|
|
|