SOLUTION: Using a conditional proof: 1. (D v E) ⊃ (F · G) 2.( A v B) ⊃ (D · C) /A ⊃ F Thank you.

Algebra ->  Proofs -> SOLUTION: Using a conditional proof: 1. (D v E) ⊃ (F · G) 2.( A v B) ⊃ (D · C) /A ⊃ F Thank you.      Log On


   



Question 1060045: Using a conditional proof:
1. (D v E) ⊃ (F · G)
2.( A v B) ⊃ (D · C) /A ⊃ F
Thank you.

Answer by jim_thompson5910(35256) About Me  (Show Source):
You can put this solution on YOUR website!

I'm going to use the -> symbol instead of the (horseshoe) symbol
The key is to assume A and then show how it leads to F.
NumberStatementLines UsedReason
1(D v E) -> (F * G)
2(A v B) -> (D * C)
:.A -> F
3AAssumption for Conditional Proof
4A v B3Addition
5D * C2,4Modus Ponens
6D5Simplifcation
7D v E6Addition
8F * G1,7Modus Ponens
9F8Simplifcation
10A -> F3-9Conditional Proof