can i have help with these two proofs?
1. X >Y
2. (Y v ~X) > (Y > Z) / ~Z > ~X
The conclusion is equivalent to ~~X > ~~Z by transposition
which is equivalent to X > Y by double negation.
We first form a conditional proof for X > Z:
1. X > Y
2. (Y v ~X) > (Y > Z) / X > Z
|3. X ACP
|4. Y 1,3 MP
|5. Y v ~X 4 Add
|6. Y > Z 2,5 MP
7. X > Z 3-6, CP
8. ~Z > ~X 7, Transposition
1. (A & U) < > ~R
2. ~(~R v ~A) / ~U
3. ~~R & ~~A 2, DM
4. R & A 3, DN
5. ~~R < > ~(A & U) 1, TR (transposition)
6. R <> ~(A & U) 5, DN
7. R 4, Simp.
8. ~(A & U) 6,7, MP
9. ~A v ~U 8, DM
10. A 4, Simp.
11. ~~A 10, DN
12. ~U 9,11, DS (disjunctive syllogism)
Edwin