SOLUTION: Prove the argument valid. Where = stands for a bi-conditional. ~(A & B) = ~C (D v E) > C // E > A

Algebra ->  Proofs -> SOLUTION: Prove the argument valid. Where = stands for a bi-conditional. ~(A & B) = ~C (D v E) > C // E > A      Log On


   



Question 1009036: Prove the argument valid. Where = stands for a bi-conditional.
~(A & B) = ~C
(D v E) > C // E > A

Answer by jim_thompson5910(35256) About Me  (Show Source):
You can put this solution on YOUR website!
I'm going to use a conditional proof. So that means we assume E is true (line 3). If we can show it leads to A (line 12), then E > A is true.

NumberStatementLines UsedReason
1~(A & B) = ~C
2(D v E) > C
.:E > A
3EACP
4E v D3Add
5D v E4Comm
6C2,5MP
7~~C6DN
8[~(A & B) > ~C] & [~C > ~(A & B)]1ME
9~(A & B) > ~C8Simp
10~~(A & B)9,7MT
11A & B10DN
12A11Simp
13E > A3-12CP


Abbreviations/Acronyms Used:

ACP = Assumption for Conditional Proof
Add = Addition
Comm = Commutation
CP = Conditional Proof
DN = Double Negation
ME = Material Equivalence
MP = Modus Ponens
MT = Modus Tollens
Simp = Simplification