____________________
-x² – x – 5)4x³ + x² + 17x – 15
We divide the 4x³ by -x²:
= -4x, so we put that
above the 17x like this:
-4x
-x² – x – 5)4x³ + x² + 17x – 15
Then we multiply -4x by -x² - x - 5: -4x(-x² - x - 5) = 4x³ + 4x² + 20x
and write that down below
-4x
-x² – x – 5)4x³ + x² + 17x – 15
4x³ + 4x² + 20x
Next we draw a line under that
-4x
-x² – x – 5)4x³ + x² + 17x – 15
4x³ + 4x² + 20x
Now we subtract, imagining all the signs changed like this
and adding:
4x³ + x² + 17x
-4x³ - 4x² - 20x
-3x² - 3x
We write that down under the line:
-4x
-x² – x – 5)4x³ + x² + 17x – 15
4x³ + 4x² + 20x
-3x² - 3x
We bring down the -15
-4x
-x² – x – 5)4x³ + x² + 17x – 15
4x³ + 4x² + 20x
-3x² - 3x - 15
We divide the -3x² by -x²:
= +3, so we put that
above the -15 like this (don't forget the + sign:
-4x + 3
-x² – x – 5)4x³ + x² + 17x – 15
4x³ + 4x² + 20x
-3x² - 3x - 15
Then we multiply +3 by -x² - x - 5: +3(-x²-x-5) = -3x² - 3x - 15
and write that down below
-4x + 3
-x² – x – 5)4x³ + x² + 17x – 15
4x³ + 4x² + 20x
-3x² - 3x - 15
-3x² - 3x - 15
Next we draw a line under that
-4x + 3
-x² – x – 5)4x³ + x² + 17x – 15
4x³ + 4x² + 20x
-3x² - 3x - 15
-3x² - 3x - 15
Now we subtract, imagining all the signs changed like this
and adding:
-3x² - 3x - 15
3x² + 3x + 15
0
And we get a 0 remainder, so the answer is the quotient -4x + 3
Edwin