SOLUTION: In English: Ten people are randomly seated at a round table. What the probability p that two members of a couple in particular are sitting together? En español: Diez personas

Algebra ->  Probability-and-statistics -> SOLUTION: In English: Ten people are randomly seated at a round table. What the probability p that two members of a couple in particular are sitting together? En español: Diez personas       Log On


   



Question 681565: In English:
Ten people are randomly seated at a round table. What the probability p that two members of a couple in particular are sitting together?
En español:
Diez personas se encuentran sentadas aleatoriamente en una mesa redonda. ¿Cuál es la probabildad p de que dos miembros de una pareja en particular esten sentados juntos?

Answer by Edwin McCravy(20054) About Me  (Show Source):
You can put this solution on YOUR website!
En español:

Diez personas al azar están sentadas en una mesa redonda. ¿Lo que la probabilidad p que dos miembros de una pareja en particular están sentados juntos?
Tenemos cosas de 9, 8 personas solteras y 1 par.

Supongamos que los dos

Ya que es una mesa redonda, estos 9 se consideran al mismo tiempo,
así que vamos a calcular la probabilidad de CDEFGHIJ (AB) y dividir
por 9.

(AB)CDEFGHIJ
C(AB)DEFGHIJ
CD(AB)EFGHIJ
CDE(AB)FGHIJ
CDEF(AB)GHIJ
CDEFG(AB)HIJ
CDEFGH(AB)IJ
CDEFGHI(AB)J
CDEFGHIJ(AB)

Hay 2! maneras de organizar el (AB) y 8! maneras de organizar la
CDEFGHIJ, por lo tanto, 2! ·8! = 2·40320 = 80640 maneras.

Luego dividimos por 9 ya que es una mesa redonda:

80640%2F9 = 8960
-----------------------
In English: 	

Ten people are randomly seated at a round table. What the probability p that two members of a couple in particular are sitting together?
We have 9 things, 8 single people and 1 couple.

Suppose the two 

Since it is a round table, these 9 are considered all the same,
so we will calculate the probability of (AB)CDEFGHIJ and divide
by 9.

(AB)CDEFGHIJ
C(AB)DEFGHIJ
CD(AB)EFGHIJ
CDE(AB)FGHIJ
CDEF(AB)GHIJ
CDEFG(AB)HIJ
CDEFGH(AB)IJ
CDEFGHI(AB)J
CDEFGHIJ(AB)

There are 2! ways to arrange the (AB) and 8! ways to arrange the
CDEFGHIJ, therefore, 2!·8! = 2·40320 = 80640 ways.

Then we divide by 9 since it is a round table:

80640%2F9 = 8960

Edwin