SOLUTION: Roll total (die 1, die 2) Number of combinations Probability 2 (1,1) 1 1/36 3 (1,2) or (2,1) 2 2/36 4 (1,3), (2,2), (3,1) 3 3/36 5 (1,4), (2,3

Algebra ->  Probability-and-statistics -> SOLUTION: Roll total (die 1, die 2) Number of combinations Probability 2 (1,1) 1 1/36 3 (1,2) or (2,1) 2 2/36 4 (1,3), (2,2), (3,1) 3 3/36 5 (1,4), (2,3      Log On


   



Question 625745: Roll total (die 1, die 2) Number of combinations Probability

2 (1,1) 1 1/36
3 (1,2) or (2,1) 2 2/36
4 (1,3), (2,2), (3,1) 3 3/36
5 (1,4), (2,3), (3,2),(4-1) 4 4/36
6 (1,5), (2,4), (3,3), (4,2), (5,1) 5 5/36
7 (1,6), (2,5), (3,4), (4,3), (5,2), (6,1) 6 6/36
8 (2,6), (3,5), (4,4), (5,3), (6-2) 5 5/36
9 (3,6), (4,5), (5,4), (6,3) 4 4/36
10 (4,6), (5,5), (6,4) 3 3/36
11 (5,6) or (6,5) 2 2/36
12 (6,6) 1 1/36

Total _36__
Using the above probabilities, the probability of rolling a 5 or a 7 is: _____?

Answer by oscargut(2103) About Me  (Show Source):
You can put this solution on YOUR website!
Answer: 5/18
If you have any doubt or if you have more problems my e-mail is:
mthman@gmail.com