| 
 
 
| Question 1206830:  A survey of 45 randomly selected iPhone owners showed that the purchase price has a mean of $426 with a sample standard deviation of $190.
 
 b. Compute the 95% confidence interval for the mean. (Round the final answers to 2 decimal places.)
 
 The confidence interval is between $
 and $
 .
 
 Appendix B.1
 Areas under the Normal Curve
 z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
 0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
 0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
 0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
 0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
 0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
 0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224
 0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
 0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
 0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
 0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
 1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
 1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.383
 1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
 1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
 1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
 1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
 1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
 1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
 1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
 1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
 2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
 2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
 2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
 2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
 2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
 2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
 2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
 2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
 2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
 2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
 3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990
 Example:
 If z = 1.96, then
 P (0 to z) = 0.4750
 z 0 1.96
 0.4750
 AP-56 Chapter 2
 AP-56
 Appendix B.2
 Student’s t Distribution
 Confidence Intervals, c
 df
 80% 90% 95% 98% 99% 99.9%
 Level of Significance for One-Tailed Test, α
 0.10 0.05 0.025 0.01 0.005 0.0005
 Level of Significance for Two-Tailed Test, α
 0.20 0.10 0.05 0.02 0.01 0.001
 1 3.078 6.314 12.706 31.821 63.657 636.619
 2 1.886 2.920 4.303 6.965 9.925 31.599
 3 1.638 2.353 3.182 4.541 5.841 12.924
 4 1.533 2.132 2.776 3.747 4.604 8.610
 5 1.476 2.015 2.571 3.365 4.032 6.869
 6 1.440 1.943 2.447 3.143 3.707 5.959
 7 1.415 1.895 2.365 2.998 3.499 5.408
 8 1.397 1.860 2.306 2.896 3.355 5.041
 9 1.383 1.833 2.262 2.821 3.250 4.781
 10 1.372 1.812 2.228 2.764 3.169 4.587
 11 1.363 1.796 2.201 2.718 3.106 4.437
 12 1.356 1.782 2.179 2.681 3.055 4.318
 13 1.350 1.771 2.160 2.650 3.012 4.221
 14 1.345 1.761 2.145 2.624 2.977 4.140
 15 1.341 1.753 2.131 2.602 2.947 4.073
 16 1.337 1.746 2.120 2.583 2.921 4.015
 17 1.333 1.740 2.110 2.567 2.898 3.965
 18 1.330 1.734 2.101 2.552 2.878 3.922
 19 1.328 1.729 2.093 2.539 2.861 3.883
 20 1.325 1.725 2.086 2.528 2.845 3.850
 21 1.323 1.721 2.080 2.518 2.831 3.819
 22 1.321 1.717 2.074 2.508 2.819 3.792
 23 1.319 1.714 2.069 2.500 2.807 3.768
 24 1.318 1.711 2.064 2.492 2.797 3.745
 25 1.316 1.708 2.060 2.485 2.787 3.725
 26 1.315 1.706 2.056 2.479 2.779 3.707
 27 1.314 1.703 2.052 2.473 2.771 3.690
 28 1.313 1.701 2.048 2.467 2.763 3.674
 29 1.311 1.699 2.045 2.462 2.756 3.659
 30 1.310 1.697 2.042 2.457 2.750 3.646
 31 1.309 1.696 2.040 2.453 2.744 3.633
 32 1.309 1.694 2.037 2.449 2.738 3.622
 33 1.308 1.692 2.035 2.445 2.733 3.611
 34 1.307 1.691 2.032 2.441 2.728 3.601
 35 1.306 1.690 2.030 2.438 2.724 3.591
 0 0
 1
 2 α α α α1
 2
 Confidence interval  -  t t 0
 Left-tailed test  -  t t
 Right-tailed test
 t
 Two-tailed test  -  t t
 Confidence Intervals, c
 df
 80% 90% 95% 98% 99% 99.9%
 Level of Significance for One-Tailed Test, α
 0.10 0.05 0.025 0.01 0.005 0.0005
 Level of Significance for Two-Tailed Test, α
 0.20 0.10 0.05 0.02 0.01 0.001
 36 1.306 1.688 2.028 2.434 2.719 3.582
 37 1.305 1.687 2.026 2.431 2.715 3.574
 38 1.304 1.686 2.024 2.429 2.712 3.566
 39 1.304 1.685 2.023 2.426 2.708 3.558
 40 1.303 1.684 2.021 2.423 2.704 3.551
 41 1.303 1.683 2.020 2.421 2.701 3.544
 42 1.302 1.682 2.018 2.418 2.698 3.538
 43 1.302 1.681 2.017 2.416 2.695 3.532
 44 1.301 1.680 2.015 2.414 2.692 3.526
 45 1.301 1.679 2.014 2.412 2.690 3.520
 46 1.300 1.679 2.013 2.410 2.687 3.515
 47 1.300 1.678 2.012 2.408 2.685 3.510
 48 1.299 1.677 2.011 2.407 2.682 3.505
 49 1.299 1.677 2.010 2.405 2.680 3.500
 50 1.299 1.676 2.009 2.403 2.678 3.496
 51 1.298 1.675 2.008 2.402 2.676 3.492
 52 1.298 1.675 2.007 2.400 2.674 3.488
 53 1.298 1.674 2.006 2.399 2.672 3.484
 54 1.297 1.674 2.005 2.397 2.670 3.480
 55 1.297 1.673 2.004 2.396 2.668 3.476
 56 1.297 1.673 2.003 2.395 2.667 3.473
 57 1.297 1.672 2.002 2.394 2.665 3.470
 58 1.296 1.672 2.002 2.392 2.663 3.466
 59 1.296 1.671 2.001 2.391 2.662 3.463
 60 1.296 1.671 2.000 2.390 2.660 3.460
 61 1.296 1.670 2.000 2.389 2.659 3.457
 62 1.295 1.670 1.999 2.388 2.657 3.454
 63 1.295 1.669 1.998 2.387 2.656 3.452
 64 1.295 1.669 1.998 2.386 2.655 3.449
 65 1.295 1.669 1.997 2.385 2.654 3.447
 66 1.295 1.668 1.997 2.384 2.652 3.444
 67 1.294 1.668 1.996 2.383 2.651 3.442
 68 1.294 1.668 1.995 2.382 2.650 3.439
 69 1.294 1.667 1.995 2.382 2.649 3.437
 70 1.294 1.667 1.994 2.381 2.648 3.435
 AP-57
 Appendix B.2
 Confidence Intervals, c
 df
 80% 90% 95% 98% 99% 99.9%
 Level of Significance for One-Tailed Test, α
 0.10 0.05 0.025 0.01 0.005 0.0005
 Level of Significance for Two-Tailed Test, α
 0.20 0.10 0.05 0.02 0.01 0.001
 71 1.294 1.667 1.994 2.380 2.647 3.433
 72 1.293 1.666 1.993 2.379 2.646 3.431
 73 1.293 1.666 1.993 2.379 2.645 3.429
 74 1.293 1.666 1.993 2.378 2.644 3.427
 75 1.293 1.665 1.992 2.377 2.643 3.425
 76 1.293 1.665 1.992 2.376 2.642 3.423
 77 1.293 1.665 1.991 2.376 2.641 3.421
 78 1.292 1.665 1.991 2.375 2.640 3.420
 79 1.292 1.664 1.990 2.374 2.640 3.418
 80 1.292 1.664 1.990 2.374 2.639 3.416
 81 1.292 1.664 1.990 2.373 2.638 3.415
 82 1.292 1.664 1.989 2.373 2.637 3.413
 83 1.292 1.663 1.989 2.372 2.636 3.412
 84 1.292 1.663 1.989 2.372 2.636 3.410
 85 1.292 1.663 1.988 2.371 2.635 3.409
 86 1.291 1.663 1.988 2.370 2.634 3.407
 87 1.291 1.663 1.988 2.370 2.634 3.406
 88 1.291 1.662 1.987 2.369 2.633 3.405
 Confidence Intervals, c
 df
 80% 90% 95% 98% 99% 99.9%
 Level of Significance for One-Tailed Test, α
 0.10 0.05 0.025 0.01 0.005 0.0005
 Level of Significance for Two-Tailed Test, α
 0.20 0.10 0.05 0.02 0.01 0.001
 89 1.291 1.662 1.987 2.369 2.632 3.403
 90 1.291 1.662 1.987 2.368 2.632 3.402
 91 1.291 1.662 1.986 2.368 2.631 3.401
 92 1.291 1.662 1.986 2.368 2.630 3.399
 93 1.291 1.661 1.986 2.367 2.630 3.398
 94 1.291 1.661 1.986 2.367 2.629 3.397
 95 1.291 1.661 1.985 2.366 2.629 3.396
 96 1.290 1.661 1.985 2.366 2.628 3.395
 97 1.290 1.661 1.985 2.365 2.627 3.394
 98 1.290 1.661 1.984 2.365 2.627 3.393
 99 1.290 1.660 1.984 2.365 2.626 3.392
 100 1.290 1.660 1.984 2.364 2.626 3.390
 120 1.289 1.658 1.980 2.358 2.617 3.373
 140 1.288 1.656 1.977 2.353 2.611 3.361
 160 1.287 1.654 1.975 2.350 2.607 3.352
 180 1.286 1.653 1.973 2.347 2.603 3.345
 200 1.286 1.653 1.972 2.345 2.601 3.340
 ∞ 1.282 1.645 1.960 2.326 2.576 3.291
 Answer by Theo(13342)
      (Show Source): 
You can put this solution on YOUR website! A survey of 45 randomly selected iPhone owners showed that the purchase price has a mean of $426 with a sample standard deviation of $190. Compute the 95% confidence interval for the mean. (Round the final answers to 2 decimal places.)
 
 the sample size is 45.
 the sample mean is 426.
 the sample standard deviation is 190.
 
 the standard error is equal to standard deviation / sqrt(sample size) = 190 / sqrt(45) = 28.3235.
 
 t-score is indicated because standard deviation is taken from the sample rather than from the population.
 
 t-score formula is t = (x-m)/s
 
 t is the t-score
 x is the maximum and minimum sample mean at 95% two tail confidence interval.
 m is the given sample mean.
 s is the standard error.
 
 from the provided t-score table you should be able to derive that the critical t-score with 44 degrees of freedom at 95% two tail confidence interval is plus or minus 2.015.
 
 the table just shows 2.015.
 
 you have to extrapolate from that to determine that you need 2.015 on the high end of the confidence interval and -2.015 on the low end of the confidence interval.
 
 on the low end of the confidence interval, the t-score formula becomes:
 
 -2.015 = (x - 426) / 28.3235.
 solve for x to get x = -2.015 * 28.3235 + 426 = 368.93.
 
 on the high end of the confidence interval, the t-score formula becomes:
 
 2.015 = (x - 426) / 28.3235.
 
 solve for x to get x = 2.015 * 28.3235 + 426 = 483.07
 
 your two tail 95% confidence interval is 368.93 to 483.07.
 
 that should be your answer.
 
 
 
 
 
 | 
  
 | 
 |