Question 1201371: Marta has a bag filled with 5 red, 7 green, and
4 blue marbles. List the possible outcomes
for drawing two marbles.
Found 3 solutions by ikleyn, greenestamps, math_tutor2020: Answer by ikleyn(52781) (Show Source):
You can put this solution on YOUR website! .
It is the list of all possible 9 words of the length 2,
comprising of letters R, G and B in any order; repeating is allowed.
Notice that 9 = .
Answer by greenestamps(13200) (Show Source):
You can put this solution on YOUR website!
"outcomes" is not well defined. The list of possible "outcomes" will depend on whether or not "red then green" is the same as "green then red".
Answer by math_tutor2020(3817) (Show Source):
You can put this solution on YOUR website!
If we cannot distinguish a red marble apart from another red (green from other green; blue from other blue) then we'll have this sample space:
RR
RG
RB
GR
GG
GB
BR
BG
BB
R = red, G = green, B = blue
There are 3^2 = 9 different outcomes here.
Each block starts with a different letter.
Then for each block, the second letter goes in the order R,G,B.
This is to keep the same consistent pattern to be methodical in listing out all possibilities.
Notice the first letters, per each block, are ordered the same way.
----------------------------------------------
If we could be able to distinguish a red marble from another red marble (same for green and blue), then we could maybe have the marbles labeled with numbers.
Red = R1, R2, R3, R4, R5
Green = G1, G2, G3, G4, G5, G6, G7
Blue = B1, B2, B3, B4
There are 5+7+4 = 16 different marbles.
There are 16*15 = 240 different ways to pick two marbles if we could tell the similar colors apart.
Some example items in the sample space are:
R1,G2
R3,B1
G5,R2
B3,G4
|
|
|