SOLUTION: Inferential or Descriptive Statistics 1.The college secretary conducted an inventory to the different properties of the college. Discrete Data or Continuous Data 2. 20% of P9

Algebra ->  Probability-and-statistics -> SOLUTION: Inferential or Descriptive Statistics 1.The college secretary conducted an inventory to the different properties of the college. Discrete Data or Continuous Data 2. 20% of P9      Log On


   



Question 1166745: Inferential or Descriptive Statistics
1.The college secretary conducted an inventory to the different properties of the college.
Discrete Data or Continuous Data
2. 20% of P90,000 was the sales commission of Benita
Dependent or Independent Data
3. A newly born baby girl is blue-eyed.
MY ANSWER:
1.Descriptive Statistics
2.Discrete Data
3.Dependent Data
Hiiii can you check it for me? Thank you.

Answer by CPhill(2030) About Me  (Show Source):
You can put this solution on YOUR website!
Hello! I'm happy to check your answers. You've correctly identified the first two, but the third one needs a minor correction regarding how those terms are used in statistics.
---
## 🔍 Your Answers Review
| Item | Question | Your Answer | Correctness | Explanation |
| :--- | :--- | :--- | :--- | :--- |
| **1** | Inferential or Descriptive Statistics | **Descriptive Statistics** | **Correct** | **Descriptive Statistics** involves collecting, organizing, summarizing, and presenting data (like taking inventory). It describes the data set *as is* and does not attempt to draw conclusions or make predictions about a larger population. |
| **2** | Discrete Data or Continuous Data | **Discrete Data** | **Correct** | **Discrete Data** is countable and can only take on a finite number of values. Currency, especially in amounts that are counted (like a commission), is typically considered discrete data. |
| **3** | Dependent or Independent Data | Dependent Data | **Needs Review** | **Neither term correctly applies.** This statement describes a single observation ("blue-eyed baby"). The terms **Dependent** and **Independent** are used to define the relationship *between two or more* **variables** in an analysis (e.g., studying if genetics are independent of eye color). |
---
## 📝 Correction for Item 3
The concepts of **Dependent** and **Independent** are relational. They describe how variables behave in a statistical model:
* **Independent Variable** (e.g., exposure to a medication) is the variable that is being changed or controlled.
* **Dependent Variable** (e.g., patient recovery time) is the variable being measured, which is *expected to change* in response to the independent variable.
Since the statement "A newly born baby girl is blue-eyed" is only a **single observation** (a category of eye color), it doesn't involve a relationship between two variables, so it cannot be categorized as dependent or independent data.