Questions on Algebra: Polynomials, rational expressions and equations answered by real tutors!

Algebra ->  Polynomials-and-rational-expressions -> Questions on Algebra: Polynomials, rational expressions and equations answered by real tutors!      Log On


   



Tutors Answer Your Questions about Polynomials-and-rational-expressions (FREE)


Question 1209875: Fill in the blanks with constants, to make a true equation:
\frac{x^2 - 6x - 3}{x^3 - 4x} = ___/x + ___/(x - 2) + ___/(x + 2)

Click here to see answer by CPhill(1959) About Me 
Question 1209875: Fill in the blanks with constants, to make a true equation:
\frac{x^2 - 6x - 3}{x^3 - 4x} = ___/x + ___/(x - 2) + ___/(x + 2)

Click here to see answer by MathTherapy(10549) About Me 

Question 1209881: Fill in the blanks, to make a true equation:
(8x^3 + 24x^2 + 15x + 1)/((x^2 - 1)(x^2 + 3x)) = ___/(x - 1) + ___/(x + 3) + ___/x + ___/(x + 1)

Click here to see answer by Edwin McCravy(20054) About Me 

Question 1209883: Find all real x where
2 \cdot \frac{x - 5}{x - 3} > \frac{2x - 5}{x + 2} + 20.
Give your answer in interval notation.

Click here to see answer by greenestamps(13195) About Me 

Question 1209882: Find the values of x where the vertical asymptotes of f(g(x)) are located, where
f(x) = \frac{2x - 8}{x^2 - 2x - 3} and g(x) = \frac{x^3 + 2x + 9}{x^2 + 4}.

Click here to see answer by CPhill(1959) About Me 

Question 1209880: Find the all real numbers that are not in the domain of f(g(x)), where
f(x) = \frac{3x^2 - 10x - 25}{x + 1} and g(x) = \frac{14x - 6}{3x^2 + 5x + 15}

Click here to see answer by CPhill(1959) About Me 

Question 1209878: Give a polynomial g(x) so that f(x) + g(x) has a horizontal asymptote of y = 0 as x approaches positive infinity, where
f(x) = \frac{2x^4 - 3x^3 - 8x^2 + 4x - 4}{x^2 + x}.

Click here to see answer by CPhill(1959) About Me 

Question 1209877: Fill in the blanks, to make a true equation:
\frac{2x^4 - 3x^3 - x^2 + 4x - 4}{x^2 + x} = ___x^2 + ___x + ___ + ___/x + ___/(x + 1).

Click here to see answer by CPhill(1959) About Me 

Question 1209876: Find the largest value of x where the plots of
f(x) = - \frac{2x + 5}{x + 3} and g(x) = \frac{12}{x - 1}
intersect.

Click here to see answer by CPhill(1959) About Me 
Question 1209876: Find the largest value of x where the plots of
f(x) = - \frac{2x + 5}{x + 3} and g(x) = \frac{12}{x - 1}
intersect.

Click here to see answer by ikleyn(52750) About Me 
Question 1209876: Find the largest value of x where the plots of
f(x) = - \frac{2x + 5}{x + 3} and g(x) = \frac{12}{x - 1}
intersect.

Click here to see answer by greenestamps(13195) About Me 
Question 1209876: Find the largest value of x where the plots of
f(x) = - \frac{2x + 5}{x + 3} and g(x) = \frac{12}{x - 1}
intersect.

Click here to see answer by Edwin McCravy(20054) About Me 

Question 1209898: Let a and b be real numbers such that
(a^2 + 1)(b^2 + 4) = 14ab + 21.
Find the largest possible value of a^2 + b^2.

Click here to see answer by CPhill(1959) About Me 

Question 1209909: Find the maximum p such that
2x^4 y^2 + \frac{9}{4} y^4 z^2 + \frac{3}{4} z^4 x^2 + 3x^3 y^3 + 10x^3 z^3 + 15y^3 z^3 - px^2 y^2 z^2
is always nonnegative for all real x, y, and z.

Click here to see answer by mccravyedwin(405) About Me 

Question 1209910: Find the minimum value of the product
P(x,y,z) = (2x + 3y)(x + 4z) \left( y + \frac{5}{3} z \right),
when xyz = 1, and x, y, z are positive real numbers.

Click here to see answer by CPhill(1959) About Me 

Question 1209924: Let x_1, x_2, \dots, x_{100} be real numbers. If
x_1 + 2x_2 + \dots + 100x_{100} = 1,
then find the minimum value of x_1/1 + x_2/2 + \dots + x_{100}/100.

Click here to see answer by CPhill(1959) About Me 
Question 1209924: Let x_1, x_2, \dots, x_{100} be real numbers. If
x_1 + 2x_2 + \dots + 100x_{100} = 1,
then find the minimum value of x_1/1 + x_2/2 + \dots + x_{100}/100.

Click here to see answer by ikleyn(52750) About Me 

Question 1170794: WRITING POLYNOMIAL FUNCTIONS Write a polynomial function f of least degree that has rational coefficients, a leading coefficient of 1, and the given zeros: -2, -1, 2, 3, sqrt11.
Please show work.

Click here to see answer by CPhill(1959) About Me 

Question 1209974: For how many integer values of a does the equation
x^2 + ax + 12a = 5x + 8
have integer solutions for x?

Click here to see answer by CPhill(1959) About Me 

Question 1165688: trevor has a part time job working a used DVD and book store. He earns a salary of $200 plus 15% on book sales and 8% DVD sales. write a polynomial expression that describes his total pay
Click here to see answer by ikleyn(52750) About Me 

Question 1210241: what two numbers multiply to -16 and add to 15

Click here to see answer by ikleyn(52750) About Me 
Question 1210241: what two numbers multiply to -16 and add to 15

Click here to see answer by MathLover1(20849) About Me 
Question 1210241: what two numbers multiply to -16 and add to 15

Click here to see answer by math_tutor2020(3816) About Me 

Question 1209677: When g(x) is divided by x^2 - x - 6, the remainder is 2x + 7. What is the value
of g(8)?

Click here to see answer by ikleyn(52750) About Me 
Question 1209677: When g(x) is divided by x^2 - x - 6, the remainder is 2x + 7. What is the value
of g(8)?

Click here to see answer by mccravyedwin(405) About Me 

Question 1209715: Let P(x) be a polynomial of the form
P(x) = 2x^3 + ax^2 - 23x + c,
such that 12 and 7 are roots of P(x). What is the third root?
For the polynomial in part (a), compute the ordered pair (a,c).

Click here to see answer by ikleyn(52750) About Me 
Question 1209715: Let P(x) be a polynomial of the form
P(x) = 2x^3 + ax^2 - 23x + c,
such that 12 and 7 are roots of P(x). What is the third root?
For the polynomial in part (a), compute the ordered pair (a,c).

Click here to see answer by mccravyedwin(405) About Me 

Question 1209740: Factor x^2 - 2x - y^2 + 2yz + 5z^2 as the product of two polynomials of degree 1.
Click here to see answer by ikleyn(52750) About Me 

Question 1209738: Let r, s, and t be solutions of the equation 3x^3 - 4x^2 - 2x + 12 = 0. Compute
\frac{rs}{t^2} + \frac{rt}{s^2} + \frac{st}{r^2}.

Click here to see answer by ikleyn(52750) About Me 

Question 1209731: Let r, s, and t be solutions of the equation x%5E3+%2B+2x%5E2+-+5x+%2B+15+=+0.
Compute
1%2F%28r+-+2s+-+2t%29+%2B+1%2F%28s+-+2r+-+2t%29+%2B+1%2F%28t+-+2r+-+2s%29

Click here to see answer by ikleyn(52750) About Me 
Question 1209731: Let r, s, and t be solutions of the equation x%5E3+%2B+2x%5E2+-+5x+%2B+15+=+0.
Compute
1%2F%28r+-+2s+-+2t%29+%2B+1%2F%28s+-+2r+-+2t%29+%2B+1%2F%28t+-+2r+-+2s%29

Click here to see answer by Edwin McCravy(20054) About Me 

Question 1167313: What would be the solution for x in the rational equation:
x^2/(x-3)= (x+2)/(2x-5)

Click here to see answer by MathTherapy(10549) About Me 

Older solutions: 1..45, 46..90, 91..135, 136..180, 181..225, 226..270, 271..315, 316..360, 361..405, 406..450, 451..495, 496..540, 541..585, 586..630, 631..675, 676..720, 721..765, 766..810, 811..855, 856..900, 901..945, 946..990, 991..1035, 1036..1080, 1081..1125, 1126..1170, 1171..1215, 1216..1260, 1261..1305, 1306..1350, 1351..1395, 1396..1440, 1441..1485, 1486..1530, 1531..1575, 1576..1620, 1621..1665, 1666..1710, 1711..1755, 1756..1800, 1801..1845, 1846..1890, 1891..1935, 1936..1980, 1981..2025, 2026..2070, 2071..2115, 2116..2160, 2161..2205, 2206..2250, 2251..2295, 2296..2340, 2341..2385, 2386..2430, 2431..2475, 2476..2520, 2521..2565, 2566..2610, 2611..2655, 2656..2700, 2701..2745, 2746..2790, 2791..2835, 2836..2880, 2881..2925, 2926..2970, 2971..3015, 3016..3060, 3061..3105, 3106..3150, 3151..3195, 3196..3240, 3241..3285, 3286..3330, 3331..3375, 3376..3420, 3421..3465, 3466..3510, 3511..3555, 3556..3600, 3601..3645, 3646..3690, 3691..3735, 3736..3780, 3781..3825, 3826..3870, 3871..3915, 3916..3960, 3961..4005, 4006..4050, 4051..4095, 4096..4140, 4141..4185, 4186..4230, 4231..4275, 4276..4320, 4321..4365, 4366..4410, 4411..4455, 4456..4500, 4501..4545, 4546..4590, 4591..4635, 4636..4680, 4681..4725, 4726..4770, 4771..4815, 4816..4860, 4861..4905, 4906..4950, 4951..4995, 4996..5040, 5041..5085, 5086..5130, 5131..5175, 5176..5220, 5221..5265, 5266..5310, 5311..5355, 5356..5400, 5401..5445, 5446..5490, 5491..5535, 5536..5580, 5581..5625, 5626..5670, 5671..5715, 5716..5760, 5761..5805, 5806..5850, 5851..5895, 5896..5940, 5941..5985, 5986..6030, 6031..6075, 6076..6120, 6121..6165, 6166..6210, 6211..6255, 6256..6300, 6301..6345, 6346..6390, 6391..6435, 6436..6480, 6481..6525, 6526..6570, 6571..6615, 6616..6660, 6661..6705, 6706..6750, 6751..6795, 6796..6840, 6841..6885, 6886..6930, 6931..6975, 6976..7020, 7021..7065, 7066..7110, 7111..7155, 7156..7200, 7201..7245, 7246..7290, 7291..7335, 7336..7380, 7381..7425, 7426..7470, 7471..7515, 7516..7560, 7561..7605, 7606..7650, 7651..7695, 7696..7740, 7741..7785, 7786..7830, 7831..7875, 7876..7920, 7921..7965, 7966..8010, 8011..8055, 8056..8100, 8101..8145, 8146..8190, 8191..8235, 8236..8280, 8281..8325, 8326..8370, 8371..8415, 8416..8460, 8461..8505, 8506..8550, 8551..8595, 8596..8640, 8641..8685, 8686..8730, 8731..8775, 8776..8820, 8821..8865, 8866..8910, 8911..8955, 8956..9000, 9001..9045, 9046..9090, 9091..9135, 9136..9180, 9181..9225, 9226..9270, 9271..9315, 9316..9360, 9361..9405, 9406..9450, 9451..9495, 9496..9540, 9541..9585, 9586..9630, 9631..9675, 9676..9720, 9721..9765, 9766..9810, 9811..9855, 9856..9900, 9901..9945, 9946..9990, 9991..10035, 10036..10080, 10081..10125, 10126..10170, 10171..10215, 10216..10260, 10261..10305, 10306..10350, 10351..10395, 10396..10440, 10441..10485, 10486..10530, 10531..10575, 10576..10620, 10621..10665, 10666..10710, 10711..10755, 10756..10800, 10801..10845, 10846..10890, 10891..10935, 10936..10980, 10981..11025, 11026..11070, 11071..11115, 11116..11160, 11161..11205, 11206..11250, 11251..11295, 11296..11340, 11341..11385, 11386..11430, 11431..11475, 11476..11520, 11521..11565, 11566..11610, 11611..11655, 11656..11700, 11701..11745, 11746..11790, 11791..11835, 11836..11880, 11881..11925, 11926..11970, 11971..12015, 12016..12060, 12061..12105, 12106..12150, 12151..12195, 12196..12240, 12241..12285, 12286..12330, 12331..12375, 12376..12420, 12421..12465, 12466..12510, 12511..12555, 12556..12600, 12601..12645, 12646..12690, 12691..12735, 12736..12780, 12781..12825, 12826..12870, 12871..12915, 12916..12960, 12961..13005, 13006..13050, 13051..13095, 13096..13140, 13141..13185, 13186..13230, 13231..13275, 13276..13320, 13321..13365, 13366..13410, 13411..13455, 13456..13500, 13501..13545, 13546..13590, 13591..13635, 13636..13680, 13681..13725, 13726..13770, 13771..13815, 13816..13860, 13861..13905, 13906..13950, 13951..13995, 13996..14040, 14041..14085, 14086..14130, 14131..14175, 14176..14220, 14221..14265, 14266..14310, 14311..14355, 14356..14400, 14401..14445, 14446..14490, 14491..14535, 14536..14580, 14581..14625, 14626..14670, 14671..14715, 14716..14760, 14761..14805, 14806..14850, 14851..14895, 14896..14940, 14941..14985, 14986..15030, 15031..15075, 15076..15120, 15121..15165, 15166..15210, 15211..15255, 15256..15300, 15301..15345, 15346..15390, 15391..15435, 15436..15480, 15481..15525, 15526..15570, 15571..15615, 15616..15660, 15661..15705, 15706..15750, 15751..15795, 15796..15840, 15841..15885, 15886..15930, 15931..15975, 15976..16020, 16021..16065, 16066..16110, 16111..16155, 16156..16200, 16201..16245, 16246..16290, 16291..16335, 16336..16380, 16381..16425, 16426..16470, 16471..16515, 16516..16560, 16561..16605, 16606..16650, 16651..16695, 16696..16740, 16741..16785, 16786..16830, 16831..16875, 16876..16920, 16921..16965, 16966..17010, 17011..17055, 17056..17100, 17101..17145, 17146..17190, 17191..17235, 17236..17280, 17281..17325, 17326..17370, 17371..17415, 17416..17460, 17461..17505, 17506..17550, 17551..17595, 17596..17640, 17641..17685, 17686..17730, 17731..17775, 17776..17820, 17821..17865, 17866..17910, 17911..17955, 17956..18000, 18001..18045, 18046..18090, 18091..18135, 18136..18180, 18181..18225, 18226..18270, 18271..18315, 18316..18360, 18361..18405, 18406..18450, 18451..18495, 18496..18540, 18541..18585, 18586..18630, 18631..18675, 18676..18720, 18721..18765, 18766..18810, 18811..18855, 18856..18900, 18901..18945, 18946..18990, 18991..19035, 19036..19080, 19081..19125, 19126..19170, 19171..19215, 19216..19260, 19261..19305, 19306..19350, 19351..19395, 19396..19440, 19441..19485, 19486..19530, 19531..19575, 19576..19620, 19621..19665, 19666..19710, 19711..19755, 19756..19800, 19801..19845, 19846..19890, 19891..19935, 19936..19980, 19981..20025, 20026..20070, 20071..20115, 20116..20160, 20161..20205, 20206..20250, 20251..20295, 20296..20340, 20341..20385, 20386..20430, 20431..20475, 20476..20520, 20521..20565, 20566..20610, 20611..20655, 20656..20700, 20701..20745, 20746..20790, 20791..20835, 20836..20880, 20881..20925, 20926..20970, 20971..21015, 21016..21060, 21061..21105, 21106..21150, 21151..21195, 21196..21240, 21241..21285, 21286..21330, 21331..21375, 21376..21420, 21421..21465, 21466..21510, 21511..21555, 21556..21600, 21601..21645, 21646..21690, 21691..21735, 21736..21780, 21781..21825, 21826..21870, 21871..21915, 21916..21960, 21961..22005, 22006..22050, 22051..22095, 22096..22140, 22141..22185, 22186..22230, 22231..22275, 22276..22320, 22321..22365, 22366..22410, 22411..22455, 22456..22500, 22501..22545, 22546..22590, 22591..22635, 22636..22680, 22681..22725, 22726..22770, 22771..22815, 22816..22860, 22861..22905, 22906..22950, 22951..22995, 22996..23040, 23041..23085, 23086..23130, 23131..23175, 23176..23220, 23221..23265, 23266..23310, 23311..23355, 23356..23400, 23401..23445, 23446..23490, 23491..23535, 23536..23580, 23581..23625, 23626..23670, 23671..23715, 23716..23760, 23761..23805, 23806..23850, 23851..23895, 23896..23940, 23941..23985, 23986..24030, 24031..24075, 24076..24120, 24121..24165, 24166..24210, 24211..24255, 24256..24300, 24301..24345, 24346..24390, 24391..24435, 24436..24480, 24481..24525, 24526..24570, 24571..24615, 24616..24660, 24661..24705, 24706..24750, 24751..24795, 24796..24840, 24841..24885, 24886..24930, 24931..24975, 24976..25020, 25021..25065, 25066..25110, 25111..25155, 25156..25200, 25201..25245, 25246..25290, 25291..25335, 25336..25380, 25381..25425, 25426..25470, 25471..25515, 25516..25560, 25561..25605, 25606..25650, 25651..25695, 25696..25740, 25741..25785, 25786..25830, 25831..25875, 25876..25920, 25921..25965, 25966..26010, 26011..26055, 26056..26100, 26101..26145, 26146..26190, 26191..26235, 26236..26280, 26281..26325, 26326..26370, 26371..26415, 26416..26460, 26461..26505, 26506..26550, 26551..26595, 26596..26640, 26641..26685, 26686..26730, 26731..26775, 26776..26820, 26821..26865, 26866..26910, 26911..26955, 26956..27000, 27001..27045, 27046..27090, 27091..27135, 27136..27180, 27181..27225, 27226..27270, 27271..27315, 27316..27360, 27361..27405, 27406..27450, 27451..27495, 27496..27540, 27541..27585, 27586..27630, 27631..27675, 27676..27720, 27721..27765, 27766..27810, 27811..27855, 27856..27900, 27901..27945, 27946..27990, 27991..28035, 28036..28080, 28081..28125, 28126..28170, 28171..28215, 28216..28260, 28261..28305, 28306..28350, 28351..28395, 28396..28440, 28441..28485, 28486..28530, 28531..28575, 28576..28620, 28621..28665, 28666..28710, 28711..28755, 28756..28800, 28801..28845, 28846..28890, 28891..28935, 28936..28980, 28981..29025, 29026..29070, 29071..29115, 29116..29160, 29161..29205, 29206..29250, 29251..29295, 29296..29340, 29341..29385, 29386..29430, 29431..29475, 29476..29520, 29521..29565, 29566..29610, 29611..29655, 29656..29700, 29701..29745, 29746..29790, 29791..29835, 29836..29880, 29881..29925, 29926..29970, 29971..30015, 30016..30060, 30061..30105, 30106..30150, 30151..30195, 30196..30240, 30241..30285, 30286..30330, 30331..30375, 30376..30420, 30421..30465, 30466..30510, 30511..30555, 30556..30600, 30601..30645, 30646..30690, 30691..30735, 30736..30780, 30781..30825, 30826..30870, 30871..30915, 30916..30960, 30961..31005, 31006..31050, 31051..31095, 31096..31140, 31141..31185, 31186..31230, 31231..31275, 31276..31320, 31321..31365, 31366..31410, 31411..31455, 31456..31500, 31501..31545, 31546..31590, 31591..31635, 31636..31680, 31681..31725, 31726..31770, 31771..31815, 31816..31860, 31861..31905, 31906..31950, 31951..31995, 31996..32040, 32041..32085, 32086..32130, 32131..32175, 32176..32220, 32221..32265, 32266..32310, 32311..32355, 32356..32400, 32401..32445, 32446..32490, 32491..32535, 32536..32580, 32581..32625, 32626..32670, 32671..32715, 32716..32760, 32761..32805, 32806..32850, 32851..32895, 32896..32940, 32941..32985, 32986..33030, 33031..33075, 33076..33120, 33121..33165, 33166..33210, 33211..33255, 33256..33300, 33301..33345, 33346..33390, 33391..33435, 33436..33480, 33481..33525, 33526..33570, 33571..33615, 33616..33660, 33661..33705, 33706..33750, 33751..33795, 33796..33840, 33841..33885, 33886..33930, 33931..33975, 33976..34020, 34021..34065, 34066..34110, 34111..34155, 34156..34200, 34201..34245, 34246..34290, 34291..34335, 34336..34380, 34381..34425, 34426..34470, 34471..34515, 34516..34560, 34561..34605, 34606..34650, 34651..34695, 34696..34740, 34741..34785, 34786..34830, 34831..34875, 34876..34920, 34921..34965, 34966..35010, 35011..35055, 35056..35100, 35101..35145, 35146..35190, 35191..35235, 35236..35280, 35281..35325, 35326..35370, 35371..35415, 35416..35460, 35461..35505, 35506..35550, 35551..35595, 35596..35640, 35641..35685, 35686..35730, 35731..35775, 35776..35820, 35821..35865, 35866..35910, 35911..35955, 35956..36000, 36001..36045, 36046..36090, 36091..36135, 36136..36180, 36181..36225, 36226..36270, 36271..36315, 36316..36360, 36361..36405, 36406..36450, 36451..36495, 36496..36540, 36541..36585, 36586..36630, 36631..36675, 36676..36720, 36721..36765, 36766..36810, 36811..36855, 36856..36900, 36901..36945, 36946..36990, 36991..37035, 37036..37080, 37081..37125, 37126..37170, 37171..37215, 37216..37260, 37261..37305, 37306..37350, 37351..37395, 37396..37440, 37441..37485, 37486..37530, 37531..37575, 37576..37620, 37621..37665, 37666..37710, 37711..37755, 37756..37800, 37801..37845, 37846..37890, 37891..37935, 37936..37980, 37981..38025, 38026..38070, 38071..38115, 38116..38160, 38161..38205, 38206..38250, 38251..38295, 38296..38340, 38341..38385, 38386..38430, 38431..38475, 38476..38520, 38521..38565, 38566..38610, 38611..38655, 38656..38700, 38701..38745, 38746..38790, 38791..38835, 38836..38880, 38881..38925, 38926..38970, 38971..39015, 39016..39060, 39061..39105