Questions on Algebra: Polynomials, rational expressions and equations answered by real tutors!

Algebra ->  Polynomials-and-rational-expressions -> Questions on Algebra: Polynomials, rational expressions and equations answered by real tutors!      Log On


   



Tutors Answer Your Questions about Polynomials-and-rational-expressions (FREE)


Question 1209715: Let P(x) be a polynomial of the form
P(x) = 2x^3 + ax^2 - 23x + c,
such that 12 and 7 are roots of P(x). What is the third root?
For the polynomial in part (a), compute the ordered pair (a,c).

Click here to see answer by CPhill(1959) About Me 
Question 1209715: Let P(x) be a polynomial of the form
P(x) = 2x^3 + ax^2 - 23x + c,
such that 12 and 7 are roots of P(x). What is the third root?
For the polynomial in part (a), compute the ordered pair (a,c).

Click here to see answer by greenestamps(13198) About Me 

Question 1209717: Let f(x) be a polynomial. Find the remainder when f(x) is divided by x(x - 1)(x - 2), if f(0) = 0, f(1) = 1, and f(2) = 2.
Click here to see answer by CPhill(1959) About Me 

Question 1209720: Suppose p(x) is a monic cubic polynomial with real coefficients such that p(2 - 3i) = 8 and p(0) = -5 and p(4 + 7i) = 11.

Determine p(x) (in expanded form).

Click here to see answer by CPhill(1959) About Me 

Question 1209721: For parts (a)-(d), let p, q, r, and s be the roots of g(x) = 3x^4 - 8x^3 + 5x^2 + 2x - 17 - 2x^4 + 10x^3 + 11x^2 + 18x - 14.

Compute pqr + pqs + prs + qrs.

Click here to see answer by math_tutor2020(3816) About Me 

Question 1209722: Let p, q, r, and s be the roots of g(x) = 3x^4 - 8x^3 + 5x^2 + 2x - 17 - 2x^4 + 10x^3 + 11x^2 + 18x - 14.
Compute \frac{1}{p} + \frac{1}{q} + \frac{1}{r} + \frac{1}{s}.

Click here to see answer by math_tutor2020(3816) About Me 
Question 1209722: Let p, q, r, and s be the roots of g(x) = 3x^4 - 8x^3 + 5x^2 + 2x - 17 - 2x^4 + 10x^3 + 11x^2 + 18x - 14.
Compute \frac{1}{p} + \frac{1}{q} + \frac{1}{r} + \frac{1}{s}.

Click here to see answer by ikleyn(52777) About Me 

Question 1209724: Let p, q, r, and s be the roots of g(x) = 3x^4 - 8x^3 + 5x^2 + 2x - 17 - 2x^4 + 10x^3 + 11x^2 + 18x - 14.
Compute p^2 qrs + pq^2 rs + pqr^2 s + pqrs^2.

Click here to see answer by ikleyn(52777) About Me 
Question 1209724: Let p, q, r, and s be the roots of g(x) = 3x^4 - 8x^3 + 5x^2 + 2x - 17 - 2x^4 + 10x^3 + 11x^2 + 18x - 14.
Compute p^2 qrs + pq^2 rs + pqr^2 s + pqrs^2.

Click here to see answer by Edwin McCravy(20054) About Me 
Question 1209724: Let p, q, r, and s be the roots of g(x) = 3x^4 - 8x^3 + 5x^2 + 2x - 17 - 2x^4 + 10x^3 + 11x^2 + 18x - 14.
Compute p^2 qrs + pq^2 rs + pqr^2 s + pqrs^2.

Click here to see answer by mccravyedwin(406) About Me 

Question 1209723: Let p, q, r, and s be the roots of g(x) = 3x^4 - 8x^3 + 5x^2 + 2x - 17 - 2x^4 + 10x^3 + 11x^2 + 18x - 14.
Compute p^2 + q^2 + r^2 + s^2.

Click here to see answer by ikleyn(52777) About Me 

Question 1209731: Let r, s, and t be solutions of the equation x%5E3+%2B+2x%5E2+-+5x+%2B+15+=+0.
Compute
1%2F%28r+-+2s+-+2t%29+%2B+1%2F%28s+-+2r+-+2t%29+%2B+1%2F%28t+-+2r+-+2s%29

Click here to see answer by CPhill(1959) About Me 

Question 1209730: Let r, s, and t be solutions of the equation x^3 - 4x^2 - 7x + 12 = 0. Compute
\frac{rs}{t^2} + \frac{rt}{s^2} + \frac{st}{r^2}

Click here to see answer by CPhill(1959) About Me 

Question 1209729: Let t be a root of f(x) = x^3 - x + 3. Evaluate t^6 - 4t^5 + 7t^4 - 3t^2 + 10t - 13.

Click here to see answer by CPhill(1959) About Me 
Question 1209729: Let t be a root of f(x) = x^3 - x + 3. Evaluate t^6 - 4t^5 + 7t^4 - 3t^2 + 10t - 13.

Click here to see answer by ikleyn(52777) About Me 

Question 1209732: Suppose r and s are the values of x that satisfy the equation
x^2 - 2mx + (m^2 - 6m + 11) = 0
for some real number m. Find the minimum real value of (r - s)^2.

Click here to see answer by ikleyn(52777) About Me 
Question 1209732: Suppose r and s are the values of x that satisfy the equation
x^2 - 2mx + (m^2 - 6m + 11) = 0
for some real number m. Find the minimum real value of (r - s)^2.

Click here to see answer by mccravyedwin(406) About Me 

Question 1209738: Let r, s, and t be solutions of the equation 3x^3 - 4x^2 - 2x + 12 = 0. Compute
\frac{rs}{t^2} + \frac{rt}{s^2} + \frac{st}{r^2}.

Click here to see answer by CPhill(1959) About Me 

Question 1209739: Fill in the blank with a constant, so that the resulting expression can be factored as the product of two linear expressions:
2mn - 18m + 5n - mn + 20m + 4n + ___

Click here to see answer by CPhill(1959) About Me 

Question 1209740: Factor x^2 - 2x - y^2 + 2yz + 5z^2 as the product of two polynomials of degree 1.
Click here to see answer by CPhill(1959) About Me 

Question 1209745: Fill in the blanks, to complete the factorization:

(a^2 + b^2 - c^2)^2 - 4a^2 b^2 - 4a^2 c^2 + 4b^2 c^2 = (a + ___)(a + ___)(a + ___)(a + ___)

Click here to see answer by CPhill(1959) About Me 
Question 1209745: Fill in the blanks, to complete the factorization:

(a^2 + b^2 - c^2)^2 - 4a^2 b^2 - 4a^2 c^2 + 4b^2 c^2 = (a + ___)(a + ___)(a + ___)(a + ___)

Click here to see answer by ikleyn(52777) About Me 

Question 1209746: Let r_1, r_2, r_3, r_4, and r_5 be the complex roots of x^5 - 4x^2 + 7x - 1 = 0. Compute
(r_1^2 + r_1^6 + 2)(r_2^2 + r_2^6 + 2)(r_3^2 + r_3^6 + 2)(r_4^2 + r_4^6 + 2)(r_5^2 + r_5^6 + 2)

Click here to see answer by CPhill(1959) About Me 
Question 1209746: Let r_1, r_2, r_3, r_4, and r_5 be the complex roots of x^5 - 4x^2 + 7x - 1 = 0. Compute
(r_1^2 + r_1^6 + 2)(r_2^2 + r_2^6 + 2)(r_3^2 + r_3^6 + 2)(r_4^2 + r_4^6 + 2)(r_5^2 + r_5^6 + 2)

Click here to see answer by ikleyn(52777) About Me 

Question 1209749: If (x,y) satisfies the simultaneous equations
3xy - 4x^2 + 18y - 24x + 5x^2*y - 8y^3 + 20 = 0.
x^2 - y^2 = 7 + 4xy
where x and y may be complex numbers, determine all possible values of y^2.

Click here to see answer by CPhill(1959) About Me 

Question 1209748: Factor 3xy - 4x^2 + 18y - 24x + 5x^2*y - 8y^3 + 20.
Click here to see answer by CPhill(1959) About Me 

Question 1209751: In this multi-part problem, we will consider this system of simultaneous equations:
3x + 4y + 30z = -60,
2xy + 42xz - 16yz = 68,
5xyz = 56.
Let a = x/2, b = 5y and c = -4z.
Determine the monic cubic polynomial in terms of a variable t whose roots are t = a, t = b, and t = c.

[i]This is a continuation of the problem above.[/i]
Given that $(x,y,z)$ is a solution to the original system of equations, determine all distinct possible values of $x + y + z$.
(Suggestion: Using the substitutions in part (a), first determine all possible values of the ordered triple $(a,b,c)$, then determine the possible solutions $(x,y,z)$.)

Click here to see answer by CPhill(1959) About Me 

Question 1209757: If z is a complex number satisfying
z + \frac{1}{z} = \sqrt{2},
calculate
z^{10} + \frac{1}{z^{10}}.

Click here to see answer by CPhill(1959) About Me 

Question 1209760: Let
p(a, b, c) = a^5 + b^5 + c^5 + k(a^3 + b^3 + c^3)(a^4 + b^4 + c^4 - 2a^2 b^2 - 2a^2 c^2 - 2b^2 c^2).
Find the constant k so that p(a,b,c) is divisible by a + b + c.

Click here to see answer by CPhill(1959) About Me 

Question 1209763: Find the constant k so that
2x^2 + 5xy - 8y^2 + 7x + 25y + k
can be expressed as the product of two linear factors of the form ax + by + c.

Click here to see answer by CPhill(1959) About Me 

Question 1209764: Express x^8 + x^4 y^4 - x^6 y^2 + x^3 y^5 - 4xy^7 - y^8 as the product of two polynomials of degree 2, and a polynomial of degree 4.
Click here to see answer by CPhill(1959) About Me 

Question 1209770: Find all (real or nonreal) x satisfying
(x - 3)^4 + (x - 5)^4 = -8 + 6(x - 3)(x - 5)^3 - 11(x - 3)^3 (x - 5).

Click here to see answer by CPhill(1959) About Me 
Question 1209770: Find all (real or nonreal) x satisfying
(x - 3)^4 + (x - 5)^4 = -8 + 6(x - 3)(x - 5)^3 - 11(x - 3)^3 (x - 5).

Click here to see answer by ikleyn(52777) About Me 

Question 1209771: Suppose the polynomial p(x)=x^3+ax^2+bc+c has the property that the mean of its zeroes, the product of its zeroes, and the sum of its coefficients are all equal. If the y-intercept of the graph of y=p(x) is 0, what is b?
Click here to see answer by CPhill(1959) About Me 

Question 1209772: Let a = 3(x - y), b = 3(y - z), and c = 3(z - x), where x, y, z are real numbers, and assume ab + ac + bc \ne 0. Compute
(a^3 + b^3 + c^3)/(ab + ac + bc).

Click here to see answer by CPhill(1959) About Me 

Question 1209789: Draw the graph of y=x²+x+2
For -4≤x≤4

Click here to see answer by CPhill(1959) About Me 

Question 1209796: Find all real numbers a such that the roots of the polynomial
x^3 - 3x^2 + 17x + a
form an arithmetic progression and are not all real.

Click here to see answer by greenestamps(13198) About Me 

Question 1209800: Simplify (x^4 + x^3 + x^2 + x + 1) + (x^4 - x^3 + x^2 - x + 1).
Click here to see answer by CPhill(1959) About Me 
Question 1209800: Simplify (x^4 + x^3 + x^2 + x + 1) + (x^4 - x^3 + x^2 - x + 1).
Click here to see answer by Edwin McCravy(20054) About Me 

Question 1209802: Let A = x^4 + x^3 + x^2 + x + 1 and B = x^4 - x^3 + x^2 - x + 1. Simplify A + B.
Click here to see answer by CPhill(1959) About Me 
Question 1209802: Let A = x^4 + x^3 + x^2 + x + 1 and B = x^4 - x^3 + x^2 - x + 1. Simplify A + B.
Click here to see answer by greenestamps(13198) About Me 

Question 1174083: Can someone please help me with this math riddle? I have been struggling with it for days now.
Can you help me think of a Polynomial (With using ax^2+bx+c) where a Polynomial of b, P(b) is divisible by a-b, and have the quotient of this be composite? I have tried so many different values for the a,b, and c in this polynomial, and I just don't know where to go off of here. Thank you so much for your time and help!

Click here to see answer by CPhill(1959) About Me 

Question 1209838: Factor (ab + ac + bc)^3 - a^3 b^3 - a^3 c^3 - b^3 c^3 + (a^2 + b^2 + c^2)^3 - 3(a^3 + b^3 + c^3)^2 as much as possible.
Click here to see answer by CPhill(1959) About Me 

Question 1171540: What can be said about the domain of the function f . g where f(y)= {4}/{y-2} and g(x)= {5}/{3x-1} ? Express it in terms of a union of intervals of real numbers. Go to www.desmos.com/calculator and obtain the graph of f , g , and f. g .
Find the inverse of the function f(x)=4+ \sqrt{x-2} .
State the domains and ranges of both the function and the inverse function in terms of intervals of real numbers.
Go to www.desmos.com/calculator and obtain the graph of f , its inverse, and g(x)=x in the same system of axes. About what pair (a, a) are (11, 7) and (7, 11) reflected about?

Click here to see answer by CPhill(1959) About Me 

Question 1171467: What can be said about the domain of the function f \circ g where f(y)= \frac{4}{y-2} and g(x)= \frac{5}{3x-1} ? Express it in terms of a union of intervals of real numbers. Go to www.desmos.com/calculator and obtain the graph of f , g , and f \circ g .
Find the inverse of the function f(x)=4+ \sqrt{x-2} .
State the domains and ranges of both the function and the inverse function in terms of intervals of real numbers.
Go to www.desmos.com/calculator and obtain the graph of f , its inverse, and g(x)=x in the same system of axes. About what pair (a, a) are (11, 7) and (7, 11) reflected about?

Click here to see answer by CPhill(1959) About Me 

Older solutions: 1..45, 46..90, 91..135, 136..180, 181..225, 226..270, 271..315, 316..360, 361..405, 406..450, 451..495, 496..540, 541..585, 586..630, 631..675, 676..720, 721..765, 766..810, 811..855, 856..900, 901..945, 946..990, 991..1035, 1036..1080, 1081..1125, 1126..1170, 1171..1215, 1216..1260, 1261..1305, 1306..1350, 1351..1395, 1396..1440, 1441..1485, 1486..1530, 1531..1575, 1576..1620, 1621..1665, 1666..1710, 1711..1755, 1756..1800, 1801..1845, 1846..1890, 1891..1935, 1936..1980, 1981..2025, 2026..2070, 2071..2115, 2116..2160, 2161..2205, 2206..2250, 2251..2295, 2296..2340, 2341..2385, 2386..2430, 2431..2475, 2476..2520, 2521..2565, 2566..2610, 2611..2655, 2656..2700, 2701..2745, 2746..2790, 2791..2835, 2836..2880, 2881..2925, 2926..2970, 2971..3015, 3016..3060, 3061..3105, 3106..3150, 3151..3195, 3196..3240, 3241..3285, 3286..3330, 3331..3375, 3376..3420, 3421..3465, 3466..3510, 3511..3555, 3556..3600, 3601..3645, 3646..3690, 3691..3735, 3736..3780, 3781..3825, 3826..3870, 3871..3915, 3916..3960, 3961..4005, 4006..4050, 4051..4095, 4096..4140, 4141..4185, 4186..4230, 4231..4275, 4276..4320, 4321..4365, 4366..4410, 4411..4455, 4456..4500, 4501..4545, 4546..4590, 4591..4635, 4636..4680, 4681..4725, 4726..4770, 4771..4815, 4816..4860, 4861..4905, 4906..4950, 4951..4995, 4996..5040, 5041..5085, 5086..5130, 5131..5175, 5176..5220, 5221..5265, 5266..5310, 5311..5355, 5356..5400, 5401..5445, 5446..5490, 5491..5535, 5536..5580, 5581..5625, 5626..5670, 5671..5715, 5716..5760, 5761..5805, 5806..5850, 5851..5895, 5896..5940, 5941..5985, 5986..6030, 6031..6075, 6076..6120, 6121..6165, 6166..6210, 6211..6255, 6256..6300, 6301..6345, 6346..6390, 6391..6435, 6436..6480, 6481..6525, 6526..6570, 6571..6615, 6616..6660, 6661..6705, 6706..6750, 6751..6795, 6796..6840, 6841..6885, 6886..6930, 6931..6975, 6976..7020, 7021..7065, 7066..7110, 7111..7155, 7156..7200, 7201..7245, 7246..7290, 7291..7335, 7336..7380, 7381..7425, 7426..7470, 7471..7515, 7516..7560, 7561..7605, 7606..7650, 7651..7695, 7696..7740, 7741..7785, 7786..7830, 7831..7875, 7876..7920, 7921..7965, 7966..8010, 8011..8055, 8056..8100, 8101..8145, 8146..8190, 8191..8235, 8236..8280, 8281..8325, 8326..8370, 8371..8415, 8416..8460, 8461..8505, 8506..8550, 8551..8595, 8596..8640, 8641..8685, 8686..8730, 8731..8775, 8776..8820, 8821..8865, 8866..8910, 8911..8955, 8956..9000, 9001..9045, 9046..9090, 9091..9135, 9136..9180, 9181..9225, 9226..9270, 9271..9315, 9316..9360, 9361..9405, 9406..9450, 9451..9495, 9496..9540, 9541..9585, 9586..9630, 9631..9675, 9676..9720, 9721..9765, 9766..9810, 9811..9855, 9856..9900, 9901..9945, 9946..9990, 9991..10035, 10036..10080, 10081..10125, 10126..10170, 10171..10215, 10216..10260, 10261..10305, 10306..10350, 10351..10395, 10396..10440, 10441..10485, 10486..10530, 10531..10575, 10576..10620, 10621..10665, 10666..10710, 10711..10755, 10756..10800, 10801..10845, 10846..10890, 10891..10935, 10936..10980, 10981..11025, 11026..11070, 11071..11115, 11116..11160, 11161..11205, 11206..11250, 11251..11295, 11296..11340, 11341..11385, 11386..11430, 11431..11475, 11476..11520, 11521..11565, 11566..11610, 11611..11655, 11656..11700, 11701..11745, 11746..11790, 11791..11835, 11836..11880, 11881..11925, 11926..11970, 11971..12015, 12016..12060, 12061..12105, 12106..12150, 12151..12195, 12196..12240, 12241..12285, 12286..12330, 12331..12375, 12376..12420, 12421..12465, 12466..12510, 12511..12555, 12556..12600, 12601..12645, 12646..12690, 12691..12735, 12736..12780, 12781..12825, 12826..12870, 12871..12915, 12916..12960, 12961..13005, 13006..13050, 13051..13095, 13096..13140, 13141..13185, 13186..13230, 13231..13275, 13276..13320, 13321..13365, 13366..13410, 13411..13455, 13456..13500, 13501..13545, 13546..13590, 13591..13635, 13636..13680, 13681..13725, 13726..13770, 13771..13815, 13816..13860, 13861..13905, 13906..13950, 13951..13995, 13996..14040, 14041..14085, 14086..14130, 14131..14175, 14176..14220, 14221..14265, 14266..14310, 14311..14355, 14356..14400, 14401..14445, 14446..14490, 14491..14535, 14536..14580, 14581..14625, 14626..14670, 14671..14715, 14716..14760, 14761..14805, 14806..14850, 14851..14895, 14896..14940, 14941..14985, 14986..15030, 15031..15075, 15076..15120, 15121..15165, 15166..15210, 15211..15255, 15256..15300, 15301..15345, 15346..15390, 15391..15435, 15436..15480, 15481..15525, 15526..15570, 15571..15615, 15616..15660, 15661..15705, 15706..15750, 15751..15795, 15796..15840, 15841..15885, 15886..15930, 15931..15975, 15976..16020, 16021..16065, 16066..16110, 16111..16155, 16156..16200, 16201..16245, 16246..16290, 16291..16335, 16336..16380, 16381..16425, 16426..16470, 16471..16515, 16516..16560, 16561..16605, 16606..16650, 16651..16695, 16696..16740, 16741..16785, 16786..16830, 16831..16875, 16876..16920, 16921..16965, 16966..17010, 17011..17055, 17056..17100, 17101..17145, 17146..17190, 17191..17235, 17236..17280, 17281..17325, 17326..17370, 17371..17415, 17416..17460, 17461..17505, 17506..17550, 17551..17595, 17596..17640, 17641..17685, 17686..17730, 17731..17775, 17776..17820, 17821..17865, 17866..17910, 17911..17955, 17956..18000, 18001..18045, 18046..18090, 18091..18135, 18136..18180, 18181..18225, 18226..18270, 18271..18315, 18316..18360, 18361..18405, 18406..18450, 18451..18495, 18496..18540, 18541..18585, 18586..18630, 18631..18675, 18676..18720, 18721..18765, 18766..18810, 18811..18855, 18856..18900, 18901..18945, 18946..18990, 18991..19035, 19036..19080, 19081..19125, 19126..19170, 19171..19215, 19216..19260, 19261..19305, 19306..19350, 19351..19395, 19396..19440, 19441..19485, 19486..19530, 19531..19575, 19576..19620, 19621..19665, 19666..19710, 19711..19755, 19756..19800, 19801..19845, 19846..19890, 19891..19935, 19936..19980, 19981..20025, 20026..20070, 20071..20115, 20116..20160, 20161..20205, 20206..20250, 20251..20295, 20296..20340, 20341..20385, 20386..20430, 20431..20475, 20476..20520, 20521..20565, 20566..20610, 20611..20655, 20656..20700, 20701..20745, 20746..20790, 20791..20835, 20836..20880, 20881..20925, 20926..20970, 20971..21015, 21016..21060, 21061..21105, 21106..21150, 21151..21195, 21196..21240, 21241..21285, 21286..21330, 21331..21375, 21376..21420, 21421..21465, 21466..21510, 21511..21555, 21556..21600, 21601..21645, 21646..21690, 21691..21735, 21736..21780, 21781..21825, 21826..21870, 21871..21915, 21916..21960, 21961..22005, 22006..22050, 22051..22095, 22096..22140, 22141..22185, 22186..22230, 22231..22275, 22276..22320, 22321..22365, 22366..22410, 22411..22455, 22456..22500, 22501..22545, 22546..22590, 22591..22635, 22636..22680, 22681..22725, 22726..22770, 22771..22815, 22816..22860, 22861..22905, 22906..22950, 22951..22995, 22996..23040, 23041..23085, 23086..23130, 23131..23175, 23176..23220, 23221..23265, 23266..23310, 23311..23355, 23356..23400, 23401..23445, 23446..23490, 23491..23535, 23536..23580, 23581..23625, 23626..23670, 23671..23715, 23716..23760, 23761..23805, 23806..23850, 23851..23895, 23896..23940, 23941..23985, 23986..24030, 24031..24075, 24076..24120, 24121..24165, 24166..24210, 24211..24255, 24256..24300, 24301..24345, 24346..24390, 24391..24435, 24436..24480, 24481..24525, 24526..24570, 24571..24615, 24616..24660, 24661..24705, 24706..24750, 24751..24795, 24796..24840, 24841..24885, 24886..24930, 24931..24975, 24976..25020, 25021..25065, 25066..25110, 25111..25155, 25156..25200, 25201..25245, 25246..25290, 25291..25335, 25336..25380, 25381..25425, 25426..25470, 25471..25515, 25516..25560, 25561..25605, 25606..25650, 25651..25695, 25696..25740, 25741..25785, 25786..25830, 25831..25875, 25876..25920, 25921..25965, 25966..26010, 26011..26055, 26056..26100, 26101..26145, 26146..26190, 26191..26235, 26236..26280, 26281..26325, 26326..26370, 26371..26415, 26416..26460, 26461..26505, 26506..26550, 26551..26595, 26596..26640, 26641..26685, 26686..26730, 26731..26775, 26776..26820, 26821..26865, 26866..26910, 26911..26955, 26956..27000, 27001..27045, 27046..27090, 27091..27135, 27136..27180, 27181..27225, 27226..27270, 27271..27315, 27316..27360, 27361..27405, 27406..27450, 27451..27495, 27496..27540, 27541..27585, 27586..27630, 27631..27675, 27676..27720, 27721..27765, 27766..27810, 27811..27855, 27856..27900, 27901..27945, 27946..27990, 27991..28035, 28036..28080, 28081..28125, 28126..28170, 28171..28215, 28216..28260, 28261..28305, 28306..28350, 28351..28395, 28396..28440, 28441..28485, 28486..28530, 28531..28575, 28576..28620, 28621..28665, 28666..28710, 28711..28755, 28756..28800, 28801..28845, 28846..28890, 28891..28935, 28936..28980, 28981..29025, 29026..29070, 29071..29115, 29116..29160, 29161..29205, 29206..29250, 29251..29295, 29296..29340, 29341..29385, 29386..29430, 29431..29475, 29476..29520, 29521..29565, 29566..29610, 29611..29655, 29656..29700, 29701..29745, 29746..29790, 29791..29835, 29836..29880, 29881..29925, 29926..29970, 29971..30015, 30016..30060, 30061..30105, 30106..30150, 30151..30195, 30196..30240, 30241..30285, 30286..30330, 30331..30375, 30376..30420, 30421..30465, 30466..30510, 30511..30555, 30556..30600, 30601..30645, 30646..30690, 30691..30735, 30736..30780, 30781..30825, 30826..30870, 30871..30915, 30916..30960, 30961..31005, 31006..31050, 31051..31095, 31096..31140, 31141..31185, 31186..31230, 31231..31275, 31276..31320, 31321..31365, 31366..31410, 31411..31455, 31456..31500, 31501..31545, 31546..31590, 31591..31635, 31636..31680, 31681..31725, 31726..31770, 31771..31815, 31816..31860, 31861..31905, 31906..31950, 31951..31995, 31996..32040, 32041..32085, 32086..32130, 32131..32175, 32176..32220, 32221..32265, 32266..32310, 32311..32355, 32356..32400, 32401..32445, 32446..32490, 32491..32535, 32536..32580, 32581..32625, 32626..32670, 32671..32715, 32716..32760, 32761..32805, 32806..32850, 32851..32895, 32896..32940, 32941..32985, 32986..33030, 33031..33075, 33076..33120, 33121..33165, 33166..33210, 33211..33255, 33256..33300, 33301..33345, 33346..33390, 33391..33435, 33436..33480, 33481..33525, 33526..33570, 33571..33615, 33616..33660, 33661..33705, 33706..33750, 33751..33795, 33796..33840, 33841..33885, 33886..33930, 33931..33975, 33976..34020, 34021..34065, 34066..34110, 34111..34155, 34156..34200, 34201..34245, 34246..34290, 34291..34335, 34336..34380, 34381..34425, 34426..34470, 34471..34515, 34516..34560, 34561..34605, 34606..34650, 34651..34695, 34696..34740, 34741..34785, 34786..34830, 34831..34875, 34876..34920, 34921..34965, 34966..35010, 35011..35055, 35056..35100, 35101..35145, 35146..35190, 35191..35235, 35236..35280, 35281..35325, 35326..35370, 35371..35415, 35416..35460, 35461..35505, 35506..35550, 35551..35595, 35596..35640, 35641..35685, 35686..35730, 35731..35775, 35776..35820, 35821..35865, 35866..35910, 35911..35955, 35956..36000, 36001..36045, 36046..36090, 36091..36135, 36136..36180, 36181..36225, 36226..36270, 36271..36315, 36316..36360, 36361..36405, 36406..36450, 36451..36495, 36496..36540, 36541..36585, 36586..36630, 36631..36675, 36676..36720, 36721..36765, 36766..36810, 36811..36855, 36856..36900, 36901..36945, 36946..36990, 36991..37035, 37036..37080, 37081..37125, 37126..37170, 37171..37215, 37216..37260, 37261..37305, 37306..37350, 37351..37395, 37396..37440, 37441..37485, 37486..37530, 37531..37575, 37576..37620, 37621..37665, 37666..37710, 37711..37755, 37756..37800, 37801..37845, 37846..37890, 37891..37935, 37936..37980, 37981..38025, 38026..38070, 38071..38115, 38116..38160, 38161..38205, 38206..38250, 38251..38295, 38296..38340, 38341..38385, 38386..38430, 38431..38475, 38476..38520, 38521..38565, 38566..38610, 38611..38655, 38656..38700, 38701..38745, 38746..38790, 38791..38835, 38836..38880, 38881..38925, 38926..38970, 38971..39015, 39016..39060, 39061..39105