SOLUTION: Use long division to find the quotient Q(x) and the remainder R(x) when p(x) is divided by d(x). Express P(x) in the form d(x)*Q(x)+R(x). P(x)=x^4+4x^3-x-8 d(x)=x-2

Algebra ->  Polynomials-and-rational-expressions -> SOLUTION: Use long division to find the quotient Q(x) and the remainder R(x) when p(x) is divided by d(x). Express P(x) in the form d(x)*Q(x)+R(x). P(x)=x^4+4x^3-x-8 d(x)=x-2      Log On


   



Question 966542: Use long division to find the quotient Q(x) and the remainder R(x) when p(x) is divided by d(x). Express P(x) in the form d(x)*Q(x)+R(x).
P(x)=x^4+4x^3-x-8
d(x)=x-2

Answer by josgarithmetic(39617) About Me  (Show Source):
You can put this solution on YOUR website!
Do the same as for regular long division. THE SAME!!!

I do not show here the separate steps; only the main work altogether:

____________________x^3_______6x^2_______12x_______23__________
_________|____________________________________________________
___x-2___|_________x^4_______4x^3______0*x^2______-x______-8
___________________x^4______-2x^3
__________________________________
___________________0_________6x^3_____0*x^2
_____________________________6x^3_____-12x^2
___________________________________________________
_______________________________0_______12x^2______-x
_______________________________________12x^2______-24x
_______________________________________________________
_______________________________________0__________23x______-8
__________________________________________________23x_____-46
______________________________________________________________
___________________________________________________0______38


Quotient is x%5E3%2B6x%5E2%2B12x%2B23 and remainder is 38.