SOLUTION: Choose the correct simplification of (2x^3 + x^2 − 4x) − (9x^3 − 3x^2).
I think the answer is A but im not so sure
A: 11x^3 − 2x^2 − 4x
B: ͨ
Algebra ->
Polynomials-and-rational-expressions
-> SOLUTION: Choose the correct simplification of (2x^3 + x^2 − 4x) − (9x^3 − 3x^2).
I think the answer is A but im not so sure
A: 11x^3 − 2x^2 − 4x
B: ͨ
Log On
Question 337140: Choose the correct simplification of (2x^3 + x^2 − 4x) − (9x^3 − 3x^2).
I think the answer is A but im not so sure
A: 11x^3 − 2x^2 − 4x
B: −7x^3 + 4x^2 − 4x
C: −2x^3 − 2x^2 − 4x
D: −7x^3 − 4x^2 − 4x Found 2 solutions by CharlesG2, Edwin McCravy:Answer by CharlesG2(834) (Show Source):
You can put this solution on YOUR website! Choose the correct simplification of (2x^3 + x^2 − 4x) − (9x^3 − 3x^2).
I think the answer is A but im not so sure
A: 11x^3 − 2x^2 − 4x
B: −7x^3 + 4x^2 − 4x
C: −2x^3 − 2x^2 − 4x
D: −7x^3 − 4x^2 − 4x
(2x^3 + x^2 - 4x) - (9x^3 - 3x^2)
2x^3 + x^2 - 4x - 9x^3 + 3x^2 (distributed the -1 into the last 2 terms)
2x^3 - 9x^3 + x^2 + 3x^2 - 4x (grouped like terms together)
-7x^3 + 4x^2 - 4x (simplified)
(2x³ + x² − 4x) − (9x³ − 3x²)
To remove the parentheses:
1. If the parentheses has a + or nothing at all before
it, just erase the parentheses and the + if there is one
before it; otherwise just erase the parentheses.
2. If the parentheses has a - before it, change every sign
inside it and erase the parentheses and the - sign:
The first set of parentheses has nothing before it so 1
applies and we simply erase the parentheses and get:
2x³ + x² − 4x − (9x³ − 3x²)
The remaining set of parentheses has a - before it so
we change the signs inside the parentheses and erase the
parentheses and the - sign before it:
2x³ + x² − 4x − 9x³ + 3x²
Now we collect like terms:
The terms 2x³ and -9x³ combine to give -7x³.
The terms +x² and +3x² combine to give +4x².
So we end up with:
-7x³ + 4x² - 4x
Choice B
Edwin