SOLUTION: Can someone please help me explain a real life application of a parabola other than using a satellite dish? Thnk you!!

Algebra ->  Polynomials-and-rational-expressions -> SOLUTION: Can someone please help me explain a real life application of a parabola other than using a satellite dish? Thnk you!!      Log On


   



Question 256140: Can someone please help me explain a real life application of a parabola other than using a satellite dish? Thnk you!!
Found 2 solutions by richwmiller, solver91311:
Answer by richwmiller(17219) About Me  (Show Source):
You can put this solution on YOUR website!
Mathematical parabolas are used for things that change.
You can find the highest point or the lowest point.
For example a bullet or an arrow when it goes up must come down.
Or predicting the best price.

Answer by solver91311(24713) About Me  (Show Source):
You can put this solution on YOUR website!


What is wrong with the satellite dish application?

In nature, approximations of parabolae and paraboloids are found in many diverse situations. The best-known instance of the parabola in the history of physics is the trajectory of a particle or body in motion under the influence of a uniform gravitational field without air resistance (for instance, a baseball flying through the air, neglecting air friction).

The parabolic trajectory of projectiles was discovered experimentally by Galileo in the early 17th century, who performed experiments with balls rolling on inclined planes. He also later proved this mathematically in his book Dialogue Concerning Two New Sciences. For objects extended in space, such as a diver jumping from a diving board, the object itself follows a complex motion as it rotates, but the center of mass of the object nevertheless forms a parabola. As in all cases in the physical world, the trajectory is always an approximation of a parabola. The presence of air resistance, for example, always distorts the shape, although at low speeds, the shape is a good approximation of a parabola. At higher speeds, such as in ballistics, the shape is highly distorted and does not resemble a parabola.

Another situation in which parabola may arise in nature is in two-body orbits, for example, of a small planetoid or other object under the influence of the gravitation of the sun. Such parabolic orbits are a special case that are rarely found in nature. Orbits that form a hyperbola or an ellipse are much more common. In fact, the parabolic orbit is the borderline case between those two types of orbit. An object following a parabolic orbit moves at the exact escape velocity of the object it is orbiting, while elliptical orbits are slower and hyperbolic orbits are faster.

Hercilio Luz Bridge, Florianópolis, Brazil. Suspension bridge cables follow a parabolic, not catenary, curve.

Parabolic bridge in Newcastle-on-Tyne.

Approximations of parabolae are also found in the shape of the main cables on a typical suspension bridge. Freely hanging cables as seen on a simple suspension bridge do not describe parabolic curves, but rather hyperbolic catenary curves. Under the influence of a uniform load (such as a horizontal suspended deck), the otherwise hyperbolic cable is deformed toward a parabola. Unlike an inelastic chain, a freely-hanging spring of zero rest length takes the shape of a parabola.

Paraboloids arise in several physical situations as well. The best-known instance is the parabolic reflector, which is a mirror or similar reflective device that concentrates light or other forms of electromagnetic radiation to a common focal point. The principle of the parabolic reflector may have been discovered in the 3rd century BC by the geometer Archimedes, who, according to a legend of debatable veracity,[3] constructed parabolic mirrors to defend Syracuse against the Roman fleet, by concentrating the sun's rays to set fire to the decks of the Roman ships. The principle was applied to telescopes in the 17th century. Today, paraboloid reflectors can be commonly observed throughout much of the world in microwave and satellite dish antennas.

Parabolic shape formed by a liquid surface under rotation. Two liquids of different densities are contained in a narrow rectangular tank. The tank is rotated and the transition point from one liquid to the other describes a parabolic shape.

Paraboloids are also observed in the surface of a liquid confined to a container and rotated around the central axis. In this case, the centrifugal force causes the liquid to climb the walls of the container, forming a parabolic surface. This is the principle behind the liquid mirror telescope.

Aircraft used to create a weightless state for purposes of experimentation, such as NASA's “Vomit Comet,” follow a vertically parabolic trajectory for brief periods in order to trace the course of an object in free fall, which produces the same effect as zero gravity for most purposes.

The internet is full of this stuff...just Google it.

John