|  | 
| 
 
 
| Question 1030202:  Solve the partial fraction decomposition of the rational expression:
 (3x^2+49) / (x(x+7)^2) = (A/x) + (B/(x+7)) + (C/(x+7)^2)
 Thank you for your help!!
 Answer by stanbon(75887)
      (Show Source): 
You can put this solution on YOUR website! Solve the partial fraction decomposition of the rational expression: (3x^2+49) / (x(x+7)^2) = (A/x) + (B/(x+7)) + (C/(x+7)^2)
 --------------------------
 Equate the numerators of the two sides::
 3x^2 + 49 = A(x+7)^2 + B(x(x+7)) + Cx
 -------
 3x^2 + 49 = A(x^2+14x + 49) + B(x^2+7x) + Cx
 -------
 3x^2 + 49 = (A+B)x^2 + (14A +7B +C)x + 49A
 --------
 Equate the proper coefficients:
 A+B = 3
 14A + 7B + C = 0
 49A = 49
 ----------
 Solve for A, B, and C
 A = 1
 B = 3-1 = 2
 -----
 C = -14-14 = -28
 ------------------------
 (3x^2+49) / (x(x+7)^2) = (A/x) + (B/(x+7)) + (C/(x+7)^2)
 ----------------
 (3x^2+49) / (x(x+7)^2) =  = 1/x + 2/(x+7) - 28/(x+7)^2
 --------------------
 Cheers,
 Stan H.
 ---------------
 -----
 3x^2 + 49 = 1/(x+7)^2 + 2/
 | 
  
 | 
 |  |  |