Lesson Remarkable identities for Binomial Coefficients
Algebra
->
Permutations
-> Lesson Remarkable identities for Binomial Coefficients
Log On
Algebra: Combinatorics and Permutations
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Source code of 'Remarkable identities for Binomial Coefficients'
This Lesson (Remarkable identities for Binomial Coefficients)
was created by by
ikleyn(52781)
:
View Source
,
Show
About ikleyn
:
<H2>Remarkable identities for Binomial Coefficients</H2> <H3>Problem 1</H3>Prove this identity for <B>Binomial Coefficients</B> {{{C[n]^0}}} + {{{C[n]^1}}} + {{{C[n]^2}}} + . . . + {{{C[n]^k}}} + . . . + {{{C[n]^n}}} = {{{2^n}}} for any positive integer number <B>n</B>. <B>Solution</B> The proof is very straightforward. Simply substitute {{{x}}} = {{{1}}} into the <B>Binomial Expansion</B> {{{(1 + x)^n}}} = = {{{ sum ( C[n]^i*x^i , i=0, n ) }}} (see the lesson <A HREF=http://www.algebra.com/algebra/homework/Permutations/Binomial-Theorem.lesson?content_action=edit_dev>Binomial Theorem</A> under the current topic in this site). You will get the required identity. This is how it looks for the low order binomial coefficients: <B>n</B> = 1, {{{C[1]^0}}} = 1, {{{C[1]^1}}} = 1, {{{C[1]^0}}} + {{{C[1]^1}}} = 1 + 1 = 2; <B>n</B> = 2, {{{C[2]^0}}} = 1, {{{C[2]^1}}} = 2, {{{C[2]^2}}} = 1, {{{C[2]^0}}} + {{{C[2]^1}}} + {{{C[2]^2}}} = 1 + 2 + 1 = 4; <B>n</B> = 3, {{{C[3]^0}}} = 1, {{{C[3]^1}}} = 3, {{{C[3]^2}}} = 3, {{{C[3]^3}}} = 1, {{{C[3]^0}}} + {{{C[3]^1}}} + {{{C[3]^2}}} + {{{C[3]^3}}} = 1 + 3 + 3 + 1 = 8. <H3>Problem 2</H3>Prove this identity for <B>Binomial Coefficients</B> {{{C[n]^0}}} - {{{C[n]^1}}} + {{{C[n]^2}}} + . . . + {{{(-1)^k*C[n]^k}}} + . . . + {{{(-1)^n*C[n]^n}}} = {{{0}}} (alternate sum) for any positive integer number <B>n</B>. <B>Solution</B> Again, the proof is very straightforward. Simply substitute {{{x}}} = {{{-1}}} into the <B>Binomial Expansion</B> {{{(1 + x)^n}}} = = {{{ sum ( C[n]^i*x^i , i=0, n ) }}} (see the lesson <A HREF=http://www.algebra.com/algebra/homework/Permutations/Binomial-Theorem.lesson?content_action=edit_dev>Binomial Theorem</A> under the current topic in this site). You will get the required identity. This is how it looks for the low order binomial coefficients: <B>n</B> = 1, {{{C[1]^0}}} = 1, {{{C[1]^1}}} = 1, {{{C[1]^0}}} - {{{C[1]^1}}} = 1 - 1 = 0; <B>n</B> = 2, {{{C[2]^0}}} = 1, {{{C[2]^1}}} = 2, {{{C[2]^2}}} = 1, {{{C[2]^0}}} - {{{C[2]^1}}} + {{{C[2]^2}}} = 1 - 2 + 1 = 0; <B>n</B> = 3, {{{C[3]^0}}} = 1, {{{C[3]^1}}} = 3, {{{C[3]^2}}} = 3, {{{C[3]^3}}} = 1, {{{C[3]^0}}} - {{{C[3]^1}}} + {{{C[3]^2}}} - {{{C[3]^3}}} = 1 - 3 + 3 - 1 = 0. <H3>Problem 3</H3>Prove this identity for <B>Binomial Coefficients</B> {{{C[n]^0}}} + {{{2*C[n]^1}}} + {{{2^2*C[n]^2}}} + . . . + {{{2^k*C[n]^k}}} + . . . + {{{2^n*C[n]^n}}} = {{{3^n}}} for any positive integer number <B>n</B>. <B>Solution</B> Similar to the <B>Problem 1</B> and <B>Problem 2</B> above, the proof is very straightforward. Simply substitute {{{x}}} = {{{2}}} into the <B>Binomial Expansion</B> {{{(1 + x)^n}}} = = {{{ sum ( C[n]^i*x^i , i=0, n ) }}} (see the lesson <A HREF=http://www.algebra.com/algebra/homework/Permutations/Binomial-Theorem.lesson?content_action=edit_dev>Binomial Theorem</A> under the current topic in this site). You will get the required identity. By doing in a similar way, you can prove many other identities for Binomial Coefficients, like these {{{C[n]^0}}} + {{{3*C[n]^1}}} + {{{3^2*C[n]^2}}} + . . . + {{{3^k*C[n]^k}}} + . . . + {{{3^n*C[n]^n}}} = {{{4^n}}}, {{{C[n]^0}}} + {{{(1/2)*C[n]^1}}} + {{{(1/2^2)*C[n]^2}}} + . . . + {{{(1/2^k)*C[n]^k}}} + . . . + {{{(1/2^n)*C[n]^n}}} = {{{(3/2)^n}}}, {{{C[n]^0}}} - {{{(1/2)*C[n]^1}}} + {{{(1/2^2)*C[n]^2}}} + . . . + {{{(((-1)^k)/2^k)*C[n]^k}}} + . . . + {{{(((-1)^n)/2^n)*C[n]^n}}} = {{{1/2^n}}}. For the close subject on the <B>Pascal's triangle</B> see the lesson <A HREF=http://www.algebra.com/algebra/homework/Permutations/The-Pascal-triangle.lesson>The Pascal's triangle</A> under the current topic in this site. My lessons on Binomial Theorem, Binomial Formula, Binomial Coefficients and Binomial Expansion in this site are - <A HREF =http://www.algebra.com/algebra/homework/Permutations/Binomial-Theorem.lesson>Binomial Theorem, Binomial Formula, Binomial Coefficients and Binomial Expansion</A> - Remarkable identities for Binomial Coefficients (this lesson) - <A HREF =http://www.algebra.com/algebra/homework/Permutations/The-Pascal-triangle.lesson>The Pascal's triangle</A> - <A HREF=https://www.algebra.com/algebra/homework/Permutations/Solved-problems-on-binomial-coefficients.lesson>Solved problems on binomial coefficients</A> - <A HREF=https://www.algebra.com/algebra/homework/Permutations/Solving-equations-that-include-binom-coefts-and-numbers-of-permutations.lesson>Solving equations that include binomial coefficients and numbers of permutations</A> - <A HREF=https://www.algebra.com/algebra/homework/Permutations/Math-circle-level-problem-on-binomial-coefficients.lesson>Math circle level problem on binomial coefficients</A> - <A HREF =https://www.algebra.com/algebra/homework/Permutations/OVERVIEW-of-lessons-on-Binomial-Expansion-Binomial-coefficients-and-Pascal%27s-triangle.lesson>OVERVIEW of lessons on Binomial Expansion, Binomial coefficients and the Pascal's triangle</A> Use this file/link <A HREF=https://www.algebra.com/algebra/homework/complex/ALGEBRA-II-YOUR-ONLINE-TEXTBOOK.lesson>ALGEBRA-II - YOUR ONLINE TEXTBOOK</A> to navigate over all topics and lessons of the online textbook ALGEBRA-II.