Questions on Algebra: Combinatorics and Permutations answered by real tutors!

Algebra ->  Permutations -> Questions on Algebra: Combinatorics and Permutations answered by real tutors!      Log On


   



Tutors Answer Your Questions about Permutations (FREE)


Question 1024508: If you randomly select a card from a well-shuffled standard deck of 52 cards, what is the probability that the card you select is a King? (Your answer must be in the form of a reduced fraction.)

Click here to see answer by robertb(5830) About Me 

Question 1024510: If you randomly select a letter from the phrase "Do not run on Ichiro," what is the probability that you select a consonant? (Your answer must be in the form of a reduced fraction.)

Click here to see answer by Theo(13342) About Me 

Question 1024511: As shown above, a classic deck of cards is made up of 52 cards, 26 are black, 26 are red. Each color is split into two suits of 13 cards each (clubs and spades are black and hearts and diamonds are red). Each suit is split into 13 individual cards (Ace, 2-10, Jack, Queen, and King).
If you select a card at random, what is the probability of getting:
1) A(n) 2 of Hearts?
2) Spades or Hearts?
3) A number smaller than 4 (counting the ace as a 1)?

Click here to see answer by mathmate(429) About Me 

Question 1024512: In a family with 3 children what is the probability of having 1 boy and then 2 girls, in that order? (Exclude multiple births and assume all outcomes are equally likely).
In a family with 3 children, what is the probability of having 1 boy and 2 girls, in any order? (Exclude multiple births and assume all outcomes are equally likely).

Click here to see answer by FrankM(1040) About Me 

Question 1024550: a cricket team of first 11 players out of 16 including 4 bowlers and 2 wicket-keepers.in how many ways you can do it so that the team contain at least 3 bowlers and 1 wicket-keeper?
(a) 2472
(b) 960
(c) 840
(d) 420

Click here to see answer by Edwin McCravy(20054) About Me 

Question 1024533: you are selecting a cricket team of first 11 players out
of 16 including 4 bowlers and 2 wicket-keepers.in how many
ways you can do it so that the team contain exactly 3
bowlers and 1 wicket-keeper?
(a) 960
(b) 840
(c) 420
(d) 252

Click here to see answer by Edwin McCravy(20054) About Me 

Question 1024465: Determine how many numbers between 10 and 1000 inclusive
contain a repeated digit and the rest of the digits(if any)
are distinct.(eg:101,229).
My solution :
For two digits number : [P(9,1)*P(9,1)-1]+[[P(9,1)*P(9,1)]/9]=89.
For three digits number : [9*9*8]+[9*9]+[9*9]+[9*9]=891.
891 + 89 = 980 numbers.
Is this the correct answer?
Thanks in advance

Click here to see answer by Edwin McCravy(20054) About Me 

Question 1024507: A school dance committee is to consist of 2 freshmen, 3 sophomores, 4 juniors, and 5 seniors. If 6 freshmen, 7 sophomores, 7 juniors, and 8 seniors are eligible to be on the committee, in how many ways can the committee be chosen?
Click here to see answer by Theo(13342) About Me 

Question 1024646: In how many ways can the letters of the word 'PROBABILITY' be arranged if
1)it begins with 'I'
2)it must start with a consonant and end witg a vowel
3)'A' must be exactly in the middle

Click here to see answer by stanbon(75887) About Me 

Question 1024733: Please help me I never heard of this or did this before. Thanks

In the 6/53 lottery game, a player picks six numbers from 1 to 53. How many different choices does the player have?
Your answer is :

Click here to see answer by MathLover1(20849) About Me 

Question 1024774: There are 11 guests in a party
1)In how many ways can the guests be seated at a round table with 15 numbered seats?
2)In how many ways can the guests be seated at a round table with 15 identical seats?

Click here to see answer by ikleyn(52778) About Me 

Question 1024915: I have four numbers: 2, 92, 79, and 71. Without using any number twice, and always using the four numbers, I need to come up with a list of every possible combination. I know that is going to add up to a very large amount of combinations, but so far, every other place I checked failed miserably. I guess it's up to you to save the day now. Good luck, and thank you!
Click here to see answer by mathmate(429) About Me 

Question 1025099: Mary's Zip code is 19383. How many Zip codes altogether, could be formed using all of those same five digits?

Click here to see answer by fractalier(6550) About Me 

Question 1025102: From seven consonants and five vowels, how many
six letter words can be formed consisting of 3
different consonants and three different vowels?
The words need not have meaning.

Click here to see answer by Edwin McCravy(20054) About Me 

Question 1024874: In how many ways can we select a president,vice president,secretary,treasurer and auditor from a group of 8 persons?
Click here to see answer by Edwin McCravy(20054) About Me 

Question 1024622: find number of combinations that can be made by taking 4 letters of the word 'COMBINATION'
(a) 70
(b) 63
(c) 3
(d) 136

Click here to see answer by Edwin McCravy(20054) About Me 

Question 1025274: What is distinguishable permutations

Click here to see answer by Edwin McCravy(20054) About Me 

Question 1025329: A die and coin are tossed.Draw a tree diagram to show all possible outcomes of a sample space.
Click here to see answer by Fombitz(32388) About Me 

Question 1025521: Please help me this problem is driving me crazy. I need to know what equation do I use.
A computer password is required to be 5 characters long. How many passwords are possible if the password requires 3 letter(s) and 2 digits (numbers 0-9), where no repetition of any letter or digit is allowed?
There are possible passwords

Click here to see answer by Edwin McCravy(20054) About Me 

Question 1025652: What does 10C2 mean?
Click here to see answer by stanbon(75887) About Me 

Question 1025678: Please help me I never did a problem like this. Show all steps


A computer password is required to be 7 characters long. How many passwords are possible if the password requires 1 letter(s) and 6 digits (numbers 0-9), where no repetition of any letter or digit is allowed?
There are possible passwords

Click here to see answer by stanbon(75887) About Me 

Question 1025726: Please is there anyone that can help me with this problem. I have look at videos and read my book on this but still can not figure this out. I thought maybe by there being 26 letters in the alphabet and 10 numbers I could find it that way. Then I tried by it 7 characters long but that was still wrong.

A computer password is required to be 7 characters long. How many passwords are possible if the password requires 1 letter(s) and 6 digits (numbers 0-9), where no repetition of any letter or digit is allowed?
There are possible passwords.

Click here to see answer by Theo(13342) About Me 
Question 1025726: Please is there anyone that can help me with this problem. I have look at videos and read my book on this but still can not figure this out. I thought maybe by there being 26 letters in the alphabet and 10 numbers I could find it that way. Then I tried by it 7 characters long but that was still wrong.

A computer password is required to be 7 characters long. How many passwords are possible if the password requires 1 letter(s) and 6 digits (numbers 0-9), where no repetition of any letter or digit is allowed?
There are possible passwords.

Click here to see answer by josmiceli(19441) About Me 

Question 1025898: In a box there are R red pens and B blue pens. Pens are randomly selected, one at a time, until a red one is obtained. Assume that each selected pen is replaced before the next one is drawn. (a) what is the probability that you need to pick up a pen 3 times? (b) what is the probability that you need to pick up a pen at least 4 times?
Click here to see answer by Fombitz(32388) About Me 

Question 1025806: By drawing a Venn diagram, replace the expression with one involving at most one union and the complement symbol applied only to R,S, and T. Simplify the expression. (' is the complement)
(R∩S)∪(S∩T)∪(R∩S'∩T')

Click here to see answer by Edwin McCravy(20054) About Me 

Question 1026107: A fan of country music plans to make a custom CD with 1313 of her 2929 favorite songs. How many different combinations of 1313 songs are​ possible? Is it practical to make a different CD for each possible​ combination? How many different combinations of 13 songs are available?
Click here to see answer by Alan3354(69443) About Me 

Question 1026409: This exercise refers to a standard deck of playing cards. Assume that 5 cards are randomly chosen from the deck.
How many hands contain 4 kings?

Click here to see answer by Theo(13342) About Me 

Question 1026463: Please help me solve this Question
In how many ways can the number 56 be expressed as a sum of 3:s and 5:s,if
(a) the order of terms is not relevant
(b)the order of terms is relevant

Click here to see answer by Alan3354(69443) About Me 

Question 1026776: Total number of ways in which 5 balls of different colour can be distributed among 3 persons so that each person gets atleast one ball is?
Click here to see answer by robertb(5830) About Me 

Question 1026833: what is the permutations of the words Eye and Alphabet?
I never forgot how to do them over my break and I really need help.

Click here to see answer by stanbon(75887) About Me 

Question 1026829: Mrs. Levanger's class of 28 students are seated in 4 rows of 7. In how many different ways can the first row of 7 be seated?
Click here to see answer by ikleyn(52778) About Me 

Question 1026955: A six digit number is to be formed using only digits from the set {1,2,3,5,6,7,9}. There are to be three distinct digits in the numbers formed, one of which appears four times and the other two, once each. How many different numbers are possible.
Click here to see answer by richard1234(7193) About Me 

Question 1026954: Given that E and F are sets and n(E\F)=12 and n(F\E)=30, what is the smallest possible value for n(EUF)
Click here to see answer by robertb(5830) About Me 

Question 1027001: 3. A student is to answer 10 out of 13 questions in an examination such that he must choose at least 4 from the first five questions. The number of choices available to him is:
Click here to see answer by mathmate(429) About Me 

Question 1027530: I need to know all of the ways the numbers 1,8,4,3,6,5,7,and 2 can be arranged using all 8 numbers. Can you help?
Click here to see answer by ikleyn(52778) About Me 

Question 1027517: What is (f-g)(x) given f(x)=3x^3-3x and g(x)=2x^2+5x?
Click here to see answer by Cromlix(4381) About Me 

Question 1027607: how many permutations of size 3 can one produce with the letters p, r, m and n? list them.
Click here to see answer by ikleyn(52778) About Me 

Question 1027612: How many ways can you select 2 out of 10 questions on a quiz
Click here to see answer by fractalier(6550) About Me 

Question 1027443: In the set of three-digit integers {100,101,..., 999}, how many integers are there
a) with three distinct digits that are either increasing ( as in 257, 139) or decreasing (as in 752, 430)?
b) with three digits that are either non-decreasing ( as in 477, 555, 123) or non-increasing (666, 321, 943)? (Note that digits may repeat.)
All steps and explanations are greatly appreciated..Thanks!

Click here to see answer by Edwin McCravy(20054) About Me 

Question 1027444: All steps and explanations are appreciated! Thank you!!
In the set of three-digit integers {100,101,...,999} how many integers are there
a) with three distinct digits that are either increasing (as in 257, 139) or decreasing (as in 752, 430)
b) with three digits that are either non-decreasing (as in 477, 555, 123) or non-increasing (666,321,943)? (Note that digits may repeat.)

Click here to see answer by Edwin McCravy(20054) About Me 

Question 1027165: In A Permier League there are 20 soccer teams.
(a)In One Round How Many Games Are There?
(b) If five of the teams represnt one company,find the number of ways pairs of teams reprsenting differnt companies can play the game.

Click here to see answer by Edwin McCravy(20054) About Me 

Question 1027696: A horse race has 12 entries. Assuming there are no ties, how many different ways can these horses finish first, second, and third?
Click here to see answer by Alan3354(69443) About Me 

Question 1027704: Just some ideas and thanks:
What is the difference between a permutation and a combination? Create unique examples that show the difference between the two.

Click here to see answer by Theo(13342) About Me 
Question 1027704: Just some ideas and thanks:
What is the difference between a permutation and a combination? Create unique examples that show the difference between the two.

Click here to see answer by ikleyn(52778) About Me 

Question 1027695: In how many distinguishable ways can the letters in the word STATISTICS be arranged?
Thank you.

Click here to see answer by ikleyn(52778) About Me 

Older solutions: 1..45, 46..90, 91..135, 136..180, 181..225, 226..270, 271..315, 316..360, 361..405, 406..450, 451..495, 496..540, 541..585, 586..630, 631..675, 676..720, 721..765, 766..810, 811..855, 856..900, 901..945, 946..990, 991..1035, 1036..1080, 1081..1125, 1126..1170, 1171..1215, 1216..1260, 1261..1305, 1306..1350, 1351..1395, 1396..1440, 1441..1485, 1486..1530, 1531..1575, 1576..1620, 1621..1665, 1666..1710, 1711..1755, 1756..1800, 1801..1845, 1846..1890, 1891..1935, 1936..1980, 1981..2025, 2026..2070, 2071..2115, 2116..2160, 2161..2205, 2206..2250, 2251..2295, 2296..2340, 2341..2385, 2386..2430, 2431..2475, 2476..2520, 2521..2565, 2566..2610, 2611..2655, 2656..2700, 2701..2745, 2746..2790, 2791..2835, 2836..2880, 2881..2925, 2926..2970, 2971..3015, 3016..3060, 3061..3105, 3106..3150, 3151..3195, 3196..3240, 3241..3285, 3286..3330, 3331..3375, 3376..3420, 3421..3465, 3466..3510, 3511..3555, 3556..3600, 3601..3645, 3646..3690, 3691..3735, 3736..3780, 3781..3825, 3826..3870, 3871..3915, 3916..3960, 3961..4005, 4006..4050, 4051..4095, 4096..4140, 4141..4185, 4186..4230, 4231..4275, 4276..4320, 4321..4365, 4366..4410, 4411..4455, 4456..4500, 4501..4545, 4546..4590, 4591..4635, 4636..4680, 4681..4725, 4726..4770, 4771..4815, 4816..4860, 4861..4905, 4906..4950, 4951..4995, 4996..5040, 5041..5085, 5086..5130, 5131..5175, 5176..5220, 5221..5265, 5266..5310, 5311..5355, 5356..5400, 5401..5445, 5446..5490, 5491..5535, 5536..5580, 5581..5625, 5626..5670, 5671..5715, 5716..5760, 5761..5805, 5806..5850, 5851..5895, 5896..5940, 5941..5985, 5986..6030, 6031..6075, 6076..6120, 6121..6165, 6166..6210, 6211..6255, 6256..6300, 6301..6345, 6346..6390, 6391..6435, 6436..6480, 6481..6525, 6526..6570, 6571..6615, 6616..6660, 6661..6705, 6706..6750, 6751..6795, 6796..6840, 6841..6885, 6886..6930, 6931..6975, 6976..7020, 7021..7065, 7066..7110, 7111..7155, 7156..7200, 7201..7245, 7246..7290, 7291..7335, 7336..7380, 7381..7425, 7426..7470, 7471..7515, 7516..7560, 7561..7605, 7606..7650, 7651..7695, 7696..7740, 7741..7785, 7786..7830, 7831..7875, 7876..7920, 7921..7965, 7966..8010, 8011..8055, 8056..8100, 8101..8145, 8146..8190, 8191..8235, 8236..8280, 8281..8325, 8326..8370, 8371..8415, 8416..8460, 8461..8505, 8506..8550, 8551..8595, 8596..8640, 8641..8685, 8686..8730, 8731..8775, 8776..8820, 8821..8865, 8866..8910, 8911..8955, 8956..9000, 9001..9045, 9046..9090, 9091..9135, 9136..9180, 9181..9225, 9226..9270, 9271..9315, 9316..9360, 9361..9405, 9406..9450, 9451..9495, 9496..9540, 9541..9585, 9586..9630, 9631..9675, 9676..9720, 9721..9765, 9766..9810, 9811..9855, 9856..9900, 9901..9945, 9946..9990, 9991..10035