SOLUTION: How many different four-letter strings can be formed from the letters A, B, C, D, E (repeats allowed) if the first letter must be a consonant and the last letter must be a vowel?
Algebra ->
Permutations
-> SOLUTION: How many different four-letter strings can be formed from the letters A, B, C, D, E (repeats allowed) if the first letter must be a consonant and the last letter must be a vowel?
Log On
Question 984134: How many different four-letter strings can be formed from the letters A, B, C, D, E (repeats allowed) if the first letter must be a consonant and the last letter must be a vowel? Answer by reviewermath(1029) (Show Source):
You can put this solution on YOUR website! How many different four-letter strings can be formed from the letters A, B, C, D, E (repeats allowed) if the first letter must be a consonant and the last letter must be a vowel?
Solution:
3 × 5 × 5 × 2 = strings