You can
put this solution on YOUR website! Show that (n+1)! - 3(n!) + (n-1)! = (n-1)!(n-1)²
By the definition of factorial, we know that:
(n+1)! = (n+1)(n)(n-1)!
n! = (n)(n-1)!
So the left side becomes:
(n+1)(n)(n-1)! - 3(n)(n-1)! + (n-1)!
Factor out (n-1)!
(n-1)![(n+1)n - 3n + 1)
Remove the parentheses inside the brackets:
(n-1)![n² + n - 3n + 1]
Combine like terms:
(n-1)![n²-2n+1]
Factor the trinomial in the bracket:
(n-1)!(n-1)(n-1)
Write (n-1)(n-1) and (n-1)²
(n-1)!(n-1)²
Edwin