Suppose the seven students are
Ann
Barbara
Carl
Doug
Edith
Jack
Jill
If it did not matter if Jack and Jill stood together,
the answer would by 7! = 5040 ways.
But since they cannot, we must subtract from that the number
of ways they could stand together.
That's either the number of permutations of these 6 "things":
Ann
Barbara
Carlhttp://www.algebra.com/tutors/linear.solver?solver_action=plug
Doug
Edith
Jack&Jill, with Jack next to Jill, Jack in front of Jill
which is 6!
or the number of permutations of these 6 "things":
Ann
Barbara
Carl
Doug
Edith
Jill&Jack, with Jill next to Jack, Jill in front of Jack
which is also 6!
Answer 7!-2×6! = 5040-2×720 = 5040-1440 = 3600 ways.
Edwin