SOLUTION: What is the probability of getting between 3 and 6 heads in 10 tosses of a fair coin?

Algebra ->  Permutations -> SOLUTION: What is the probability of getting between 3 and 6 heads in 10 tosses of a fair coin?      Log On


   



Question 319371: What is the probability of getting between 3 and 6 heads in 10 tosses of a fair coin?
Found 2 solutions by stanbon, solver91311:
Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
What is the probability of getting between 3 and 6 heads in 10 tosses of a fair coin?
------------------
P(3<= x <=6) = binomcdf(10,0.5,6)-binomcdf(10,0.5,2) = 0.7734
==========================
Cheers,
Stan H.

Answer by solver91311(24713) About Me  (Show Source):
You can put this solution on YOUR website!


"between 3 and 6" is ambiguous. Do you mean inclusive or exclusive of 3 and 6? No matter, I'll show you what to do either way.


If you mean inclusive of 3 and 6, then the probability you seek is the probability of getting exactly 3 heads out of 10 tosses, plus the probability of getting exactly 4, plus exactly 5, plus exactly 6.

On the other hand, if you mean exclusive, then the probability you seek is the probability of exactly 4 heads out of 10 tosses plus the probability of exactly 5 heads out of 10 tosses.

The probability of successes out of trials where the probability of success on any individual trial is is given by:



Where is the number of combinations of things taken at a time and has the value

For a fair coin toss, the probability of a head on any given trial is

So, for the inclusive case, you need to calculate the following:









And sum the four results.

For the exclusive case, you only need to compute





and sum the two results



John