You can
put this solution on YOUR website!
i. ∫ x²exdx
u = x² dv = exdx
du = 2xdx v = ex
uv - ∫vdu
(x²)ex - ∫ex(2xdx)
(1) x²ex - 2∫xexdx
Now we do ∫xexdx
u = x dv = exdx
du = dx v = ex
uv - ∫vdu
xex - ∫exdx
xex - ex
Now substitute that for the integral in expression (1),
and put on the arbitrary constant + C
(1) x²ex - 2∫xexdx
x²ex - 2(xex - ex)
x²ex - 2xex + 2ex + C
ii. ∫ x ln(x)dx
u = ln(x) dv = xdx
du =
dx v =
x²
You finish.
Edwin