SOLUTION: <pre> Evaluate the determinant |5 0 1| |4 1 2| |2 5 0|</pre>

Algebra ->  Matrices-and-determiminant -> SOLUTION: <pre> Evaluate the determinant |5 0 1| |4 1 2| |2 5 0|</pre>      Log On


   



Question 772411:
Evaluate the determinant |5 0 1|
                         |4 1 2|
                         |2 5 0|

Answer by Edwin McCravy(20054) About Me  (Show Source):
You can put this solution on YOUR website!
To evaluate a 3x3 determinant, you multiply 3 numbers together
6 times. as indicated by the numbers in red below, changing
the signs of some, and then combine all 6 numbers:

If two (or all three) of the numbers multiplied go downhill to 
the right like this \, you KEEP the sign.  
If two (or all three) of the numbers multiplied go downhill to the
left like this /, you CHANGE the sign.  

|5 0 1|
|4 1 2|     (5)(1)(0) = 0   (keep the sign)      +0
|2 5 0|

|5 0 1|
|4 1 2|     (0)(2)(2) = 0   (keep the sign)      +0
|2 5 0|

|5 0 1|
|4 1 2|     (1)(4)(5) = 20  (keep the sign)     +20 
|2 5 0|

|5 0 1|
|4 1 2|     (1)(1)(2) = 2   (change the sign)    -2
|2 5 0|

|5 0 1|
|4 1 2|     (0)(4)(0) = 0   (change the sign)    -0     
|2 5 0|

|5 0 1|
|4 1 2|     (5)(2)(5) = 50  (change the sign)   -50 
|2 5 0|
----------------------------------------------------------------------------
Now add all those 6 numbers up: 0+0+20-2-0-50 = -32

Answer: -32

Edwin