|  | 
| 
 
 
| Question 556199:  integral 9x+4
 ----- dx
 x2-7x+15
 Answer by stanbon(75887)
      (Show Source): 
You can put this solution on YOUR website! integral [(9x+4)/(x^2-7x+15)] dx ---
 Use partial fraction decompostion to get::
 ------------
 = [(A/(x-5))+(B/(x-3)] = (9x/4)/(x^2-7x+15)
 -----
 A(x-3)+B(x-5) = 9x+4
 ----
 A+B = 9
 -3A-5B = 4
 -----
 3A+3B = 27
 -3A-5B = 4
 --------
 -2B = 31
 B = -31/2
 ---
 A = 49/2
 ---------------
 integra[((49/2)/(x-5) - (31/2)/(x-3)]
 ----
 = (49/2)ln(x-5) - (31/2)ln(x-3)
 ----
 Check the following site to see how this all works.
 ===============
 http://www.math.ucdavis.edu/~kouba/CalcTwoDIRECTORY/
 partialfracsoldirectory/PartialFracSol.html#SOLUTION 1
 =====================
 Cheers,
 Stan H.
 ==============
 | 
  
 | 
 |  |  |