SOLUTION: solve the system using matrices. Use Gaussian elimination with back-substitution or Gauss-Jordan elimination:
w+x+y+z=5
w+2x-y-2z=-1
w-3x-3y-z=-1
2w-x+2y-z=-2
Algebra.Com
Question 152209: solve the system using matrices. Use Gaussian elimination with back-substitution or Gauss-Jordan elimination:
w+x+y+z=5
w+2x-y-2z=-1
w-3x-3y-z=-1
2w-x+2y-z=-2
Found 2 solutions by nabla, richwmiller:
Answer by nabla(475) (Show Source): You can put this solution on YOUR website!
1 1 1 1 5
1 2 -1 -2 -1
1 -3 -3 -1 -1
2 -1 2 -1 -2
-R1+R2, -R1+R3
1 1 1 1 5
0 1 -2 -3 -6
0 -4 -4 -2 -6
2 -1 2 -1 -2
-2R1+R4
1 1 1 1 5
0 1 -2 -3 -6
0 -4 -4 -2 -6
0 -3 0 -3 -12
-1/3R4, -1/2R3
1 1 1 1 5
0 1 -2 -3 -6
0 2 2 1 3
0 1 0 1 4
-R2+R1, -R2+R4
1 0 3 4 11
0 1 -2 -3 -6
0 2 2 1 3
0 0 2 4 10
-2R2+R3
1 0 3 4 11
0 1 -2 -3 -6
0 0 6 7 15
0 0 2 4 10
1/2R4 <-> R3
1 0 3 4 11
0 1 -2 -3 -6
0 0 1 2 5
0 0 6 7 15
-3R3+R1,2R3+R2, -6R3+R4
1 0 0 -2 -4
0 1 0 1 4
0 0 1 2 5
0 0 0 -5 -3
-1/5R5
1 0 0 -2 -4
0 1 0 1 4
0 0 1 2 5
0 0 0 1 3/5
-2R4+R3,-R4+R2, 2R4+R1
1 0 0 0 -14/5
0 1 0 0 17/5
0 0 1 0 19/5
0 0 0 1 3/5
This gives solution set {-14/5, 17/5, 19/5, 3/5}.
Answer by richwmiller(17219) (Show Source): You can put this solution on YOUR website!
w+x+y+z=5
w+2x-y-2z=-1
w-3x-3y-z=-1
2w-x+2y-z=-2
1,1,1,1,5
1,2,-1,-2,-1
1,-3,-3,-1,-1
2,-1,2,-1,-2
add down (-1/1) *row 1 to row 2
1,1,1,1,5
0,1,-2,-3,-6
1,-3,-3,-1,-1
2,-1,2,-1,-2
add down (-1/1) *row 1 to row 3
1,1,1,1,5
0,1,-2,-3,-6
0,-4,-4,-2,-6
2,-1,2,-1,-2
add down (-2/1) *row 1 to row 4
1,1,1,1,5
0,1,-2,-3,-6
0,-4,-4,-2,-6
0,-3,0,-3,-12
add down (4/1) *row 2 to row 3
1,1,1,1,5
0,1,-2,-3,-6
0,0,-12,-14,-30
0,-3,0,-3,-12
add down (3/1) *row 2 to row 4
1,1,1,1,5
0,1,-2,-3,-6
0,0,-12,-14,-30
0,0,-6,-12,-30
divide row 3 by -12/1
1,1,1,1,5
0,1,-2,-3,-6
0,0,1,-14/-12,-30/-12
0,0,-6,-12,-30
add down (6/1) *row 3 to row 4
1,1,1,1,5
0,1,-2,-3,-6
0,0,1,7/6,5/2
0,0,0,-5,-15
divide row 4 by -5/1
1,1,1,1,5
0,1,-2,-3,-6
0,0,1,7/6,5/2
0,0,0,1,3
This is where you would start back substitution.
We now have z=3
We continue with the matrix solution
add up (-7/6) *row 4 to row 3
1,1,1,1,5
0,1,-2,-3,-6
0,0,1,0,-1
0,0,0,1,3
now we have y= -1
add up (3/1) *row 4 to row 2
1,1,1,1,5
0,1,-2,0,3
0,0,1,0,-1
0,0,0,1,3
add up (-1/1) *row 4 to row 1
row 1 col 2
1,1,1,0,2
0,1,-2,0,3
0,0,1,0,-1
0,0,0,1,3
add up (2/1) *row 3 to row 2
1,1,1,0,2
0,1,0,0,1
0,0,1,0,-1
0,0,0,1,3
now we have z=3 y=-1 x=1
add up (-1/1) *row 3 to row 1
1,1,0,0,3
0,1,0,0,1
0,0,1,0,-1
0,0,0,1,3
add up (-1/1) *row 2 to row 1
1,0,0,0,2
0,1,0,0,1
0,0,1,0,-1
0,0,0,1,3
now we have all four solutions
w=2 x=1 y=-1 z=3
(2,1,-1,3)
w+x+y+z=5
check
2+1-1-3=5
ok
w+2x-y-2z=-1
2+2-(-1)-6=-1
5-6=-1
ok
w-3x-3y-z=-1
2-3-3(-1)-3=-1
-1+3-3=-1
ok
2w-x+2y-z=-2
2*2-1+2(-1)-3=-2
4-1-2-3=-2
3-2-3=-2
ok
(2,1,-1,3) works in all 4 equations
RELATED QUESTIONS
Solve the system of equations to the right using matrices. Use Gaussian elimination with... (answered by JBarnum,richwmiller)
Solve the system of equations using matrices. Use Gaussian elimination with... (answered by josgarithmetic,MathTherapy)
Solve the following system of equations using Gaussian elimination (with a matrix) and... (answered by checkley71,richwmiller)
Solve the system of equations using matrices. Use Gaussian elimination with... (answered by greenestamps,richwmiller)
Solve the system of equations using matrices. Use Gaussian elimination with... (answered by josgarithmetic,ikleyn)
Use matrices to solve the system of equations (if possible). Use Gaussian elimination... (answered by richwmiller)
Solve the system of equations using matrices. Use Gaussian elimination with... (answered by Fombitz)
can you haelp me solve the system of equations. using the Gaussian elimination qith back... (answered by vertciel)
use matrices and Gauss-Jordan elimination to the solve the system of equations
x-3y+z=2
(answered by TimothyLamb)