SOLUTION: Please can someone help me, I tried lots of times to solve it but I couldn't. So the queston is: Find the value of k for which the lines 3x-2y-5=0 and kx-6y+1=0 are:
a) paralle
Algebra ->
Linear-equations
-> SOLUTION: Please can someone help me, I tried lots of times to solve it but I couldn't. So the queston is: Find the value of k for which the lines 3x-2y-5=0 and kx-6y+1=0 are:
a) paralle
Log On
Question 882302: Please can someone help me, I tried lots of times to solve it but I couldn't. So the queston is: Find the value of k for which the lines 3x-2y-5=0 and kx-6y+1=0 are:
a) parallel
b)perpendicular
3x-2y-5=0 and kx-6y+1=0
We need the slope of each
Get them both in slope-y-intercept form y=mx+b
Start with the first one:
Add -3x+5 to both sides:
Divide every term by -2
So comparing that to y = mx+b
the slope =
----------------
Now we do the second one:
kx-6y+1=0
Add -kx-1 to both sides:
Divide every term by -6
So comparing that to y = mx+b
the slope =
---------------
(a) For the two lines to be parallel the slopes must be equal:
Cross-multiply:
2k = 18
k = 9
--------------
(b) For the two lines to be parallel their product must be -1
Multiply both sides by 4
k = -4
--------------
Edwin