|
Question 82171: Hello out there,I need some help with some slope problems that is giving me a hard time,the first one is,Write the point-slope form of the line that passes through (3,-3)and (5,1).The second one is,Write an equation in slope-intercept form of the line having the given slope and passing through the given point:m=o,(0,-3).The next one is,Write the equation in slope-intercept form of the passing through each pair of points:(6,-2)and (3,-4).The last one is,Write the equation in slope-intercept form of the line passing through each pair of points:(-8,2)and (0,6),thanks for whoever can help.
Answer by jim_thompson5910(35256) (Show Source):
You can put this solution on YOUR website! note: if you need more help with finding an equation through 2 points check out this solver
"Write the point-slope form of the line that passes through (3,-3)and (5,1)"
Solved by pluggable solver: Finding the Equation of a Line |
First lets find the slope through the points ( , ) and ( , )
Start with the slope formula (note: ( , ) is the first point ( , ) and ( , ) is the second point ( , ))
Plug in , , , (these are the coordinates of given points)
Subtract the terms in the numerator to get . Subtract the terms in the denominator to get 
Reduce
So the slope is

------------------------------------------------
Now let's use the point-slope formula to find the equation of the line:
------Point-Slope Formula------
where is the slope, and ( , ) is one of the given points
So lets use the Point-Slope Formula to find the equation of the line
Plug in , , and (these values are given)
Rewrite as 
Distribute 
Multiply and to get . Now reduce to get 
Subtract from both sides to isolate y
Combine like terms and to get
------------------------------------------------------------------------------------------------------------
Answer:
So the equation of the line which goes through the points ( , ) and ( , ) is:
The equation is now in form (which is slope-intercept form) where the slope is and the y-intercept is 
Notice if we graph the equation and plot the points ( , ) and ( , ), we get this: (note: if you need help with graphing, check out this solver)
Graph of through the points ( , ) and ( , )
Notice how the two points lie on the line. This graphically verifies our answer.
|
"The second one is,Write an equation in slope-intercept form of the line having the given slope and passing through the given point:m=0,(0,-3)"
Solved by pluggable solver: FIND a line by slope and one point |
What we know about the line whose equation we are trying to find out:
- it goes through point (0, -3)
- it has a slope of 0
First, let's draw a diagram of the coordinate system with point (0, -3) plotted with a little blue dot:

Write this down: the formula for the equation, given point and intercept a, is
(see a paragraph below explaining why this formula is correct)
Given that a=0, and , we have the equation of the line:

Explanation: Why did we use formula ? Explanation goes here. We are trying to find equation y=ax+b. The value of slope (a) is already given to us. We need to find b. If a point ( , ) lies on the line, it means that it satisfies the equation of the line. So, our equation holds for ( , ): Here, we know a, , and , and do not know b. It is easy to find out: . So, then, the equation of the line is: .
Here's the graph:

|
note: its hard to see, but its a horizontal line going through (0,-3)
"The next one is,Write the equation in slope-intercept form of the passing through each pair of points:(6,-2)and (3,-4)"
Solved by pluggable solver: Finding the Equation of a Line |
First lets find the slope through the points ( , ) and ( , )
Start with the slope formula (note: ( , ) is the first point ( , ) and ( , ) is the second point ( , ))
Plug in , , , (these are the coordinates of given points)
Subtract the terms in the numerator to get . Subtract the terms in the denominator to get 
Reduce
So the slope is

------------------------------------------------
Now let's use the point-slope formula to find the equation of the line:
------Point-Slope Formula------
where is the slope, and ( , ) is one of the given points
So lets use the Point-Slope Formula to find the equation of the line
Plug in , , and (these values are given)
Rewrite as 
Distribute 
Multiply and to get . Now reduce to get 
Subtract from both sides to isolate y
Combine like terms and to get
------------------------------------------------------------------------------------------------------------
Answer:
So the equation of the line which goes through the points ( , ) and ( , ) is:
The equation is now in form (which is slope-intercept form) where the slope is and the y-intercept is 
Notice if we graph the equation and plot the points ( , ) and ( , ), we get this: (note: if you need help with graphing, check out this solver)
Graph of through the points ( , ) and ( , )
Notice how the two points lie on the line. This graphically verifies our answer.
|
"Write the equation in slope-intercept form of the line passing through each pair of points:(-8,2)and (0,6)"
Solved by pluggable solver: Finding the Equation of a Line |
First lets find the slope through the points ( , ) and ( , )
Start with the slope formula (note: ( , ) is the first point ( , ) and ( , ) is the second point ( , ))
Plug in , , , (these are the coordinates of given points)
Subtract the terms in the numerator to get . Subtract the terms in the denominator to get 
Reduce
So the slope is

------------------------------------------------
Now let's use the point-slope formula to find the equation of the line:
------Point-Slope Formula------
where is the slope, and ( , ) is one of the given points
So lets use the Point-Slope Formula to find the equation of the line
Plug in , , and (these values are given)
Rewrite as 
Distribute 
Multiply and to get . Now reduce to get 
Add to both sides to isolate y
Combine like terms and to get
------------------------------------------------------------------------------------------------------------
Answer:
So the equation of the line which goes through the points ( , ) and ( , ) is:
The equation is now in form (which is slope-intercept form) where the slope is and the y-intercept is 
Notice if we graph the equation and plot the points ( , ) and ( , ), we get this: (note: if you need help with graphing, check out this solver)
Graph of through the points ( , ) and ( , )
Notice how the two points lie on the line. This graphically verifies our answer.
|
|
|
|
| |