SOLUTION: Prove that 0,3 < S < 0,4 S= 1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(2014*2017)
Algebra
->
Inequalities
-> SOLUTION: Prove that 0,3 < S < 0,4 S= 1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(2014*2017)
Log On
Algebra: Inequalities, trichotomy
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Inequalities
Question 1023304
:
Prove that 0,3 < S < 0,4
S= 1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(2014*2017)
Answer by
robertb(5830)
(
Show Source
):
You can
put this solution on YOUR website!
S =
+...+
=
*(
+...+
)
=
= S
But
= 0.333168... >0.3, and also
....< 0.4
Hence,
0.3 < S < 0.4.