Tutors Answer Your Questions about Graphs (FREE)
Question 1128924: Looking for answer verification please.
Find the maximum value of 2x + 3y and the point at which it occurs subject to the constraints
y (greater or equal to)3x-9
y (less or equal to)x+5
y (less or equal to)-2x+11
x (greater or equal to)0, y(greater or equal to)0
After graphing and using the points I found the answer to be: 25, at point (2,7)
is this correct?
Thank you
Click here to see answer by ikleyn(52778)  |
Question 1129079: Need assistance please. I really don't know what I am doing, and the book only provides one (poor) example.
Solve using the graphical method. Choose your variables, write the objective function and the constraints, graph the constraints, shade the feasibility region, label all corner points, and determine the solution that optimizes the objective function.
Problem is as follows:
Mr. Tran has $24,000 to invest, some in bonds and the rest in stocks. He has decided that the money invested in bonds must be at least twice as much as that in stocks. But the money invested in bonds must not be greater than $18,000. If the bonds earn 6%, and the stocks earn 8%, how much money should he invest in each to maximize profit?
What I have done:
Choose variables-
X=amount invested in bonds
y=amount invested in stocks
Objective function-
P=.06x+.08y
Constraints-
This is what I am struggling with most. I find it hard to pull these out of the word problem. What I have is:
x+y>=24,000
x<=18,000
What I'm really struggling with is where this sentence, "money invested in bonds must be at least twice as much as that in stocks" fits into the equation.
If anyone has an god advice on how to set up an equation such as this I would sure appreciate it.
Thank you!
Click here to see answer by greenestamps(13198)  |
Question 1129079: Need assistance please. I really don't know what I am doing, and the book only provides one (poor) example.
Solve using the graphical method. Choose your variables, write the objective function and the constraints, graph the constraints, shade the feasibility region, label all corner points, and determine the solution that optimizes the objective function.
Problem is as follows:
Mr. Tran has $24,000 to invest, some in bonds and the rest in stocks. He has decided that the money invested in bonds must be at least twice as much as that in stocks. But the money invested in bonds must not be greater than $18,000. If the bonds earn 6%, and the stocks earn 8%, how much money should he invest in each to maximize profit?
What I have done:
Choose variables-
X=amount invested in bonds
y=amount invested in stocks
Objective function-
P=.06x+.08y
Constraints-
This is what I am struggling with most. I find it hard to pull these out of the word problem. What I have is:
x+y>=24,000
x<=18,000
What I'm really struggling with is where this sentence, "money invested in bonds must be at least twice as much as that in stocks" fits into the equation.
If anyone has an god advice on how to set up an equation such as this I would sure appreciate it.
Thank you!
Click here to see answer by ikleyn(52778)  |
Question 1129812: a. Describe the transformation that have been applied to the graph of F(x)=2^x to obtain the graph f(x)2^(x+1)-3
b. what is the Domain & Ranger of f(x)=2^(x+1)-3?
c. what is the equation of the asymptote for the graph of f(x)=2^(x+1)-3?
Click here to see answer by MathLover1(20849)  |
Question 1129864: a. Describe the transformation that have been applied to the graph of F(x)=2^x to obtain the graph f(x)2^(x+1)-3
b. what is the Domain & Range of f(x)=2^(x+1)-3?
c. What is the equation of the asymptote for the graph of f(x)=2^(x+1)-3?
Click here to see answer by MathLover1(20849)  |
Question 1130474: The profit P, in thousands of dollars, that a manufacturer makes is a function of the number N of items produced in a year, and the formula is as follows:
P= -0.2N^2 + 3.6N - 9
(a) Determine the two break-even points for this manufacturer-that is, the two production levels at which the profit is zero.
(c) How many items should they produce to get this maximum point?
Please show me how you get the answer, thank you.
Click here to see answer by Boreal(15235)  |
Question 1130474: The profit P, in thousands of dollars, that a manufacturer makes is a function of the number N of items produced in a year, and the formula is as follows:
P= -0.2N^2 + 3.6N - 9
(a) Determine the two break-even points for this manufacturer-that is, the two production levels at which the profit is zero.
(c) How many items should they produce to get this maximum point?
Please show me how you get the answer, thank you.
Click here to see answer by josmiceli(19441)  |
Question 1130474: The profit P, in thousands of dollars, that a manufacturer makes is a function of the number N of items produced in a year, and the formula is as follows:
P= -0.2N^2 + 3.6N - 9
(a) Determine the two break-even points for this manufacturer-that is, the two production levels at which the profit is zero.
(c) How many items should they produce to get this maximum point?
Please show me how you get the answer, thank you.
Click here to see answer by MathTherapy(10552)  |
Question 1130717: The table on the right represents a linear function
a.what is f (-4)?
b. If f (x)=12,what is the value of x?
c.what is the slope of the line?
d.what is the y-intercept of the line?
e.using your answers from (c)and (d), write an equation for f (x).
Table
X Y=f (x)
-4 9
-2 10
0 11
2 12
4 13
Click here to see answer by josgarithmetic(39617) |
Question 1130833: What is the y-intercept and the x-intercept of the line K if the equation is y=2x+1.
My answer was (0,9) but I was wrong for the y-intercept.
My answer was (-8,0) for the x-intercept and I was wrong.
Can you help me and show me where I went wrong? Thanks
Click here to see answer by josgarithmetic(39617) |
Question 1130836: a) y varies jointly as x and w and inversely as the square of z. Find the equation of variation when y=100, x=2, w=4, and z=20.
(b) Then solve for y when x=1, w=5 and z=4.
Please show me how you get the answer, thanks.
I have the formula y=kxw/z squared, but I don't know if that is jointly or inversely. If it is inversely, then I need help with the jointly, which I think is y=kxwz
Click here to see answer by josgarithmetic(39617) |
|
Older solutions: 1..45, 46..90, 91..135, 136..180, 181..225, 226..270, 271..315, 316..360, 361..405, 406..450, 451..495, 496..540, 541..585, 586..630, 631..675, 676..720, 721..765, 766..810, 811..855, 856..900, 901..945, 946..990, 991..1035, 1036..1080, 1081..1125, 1126..1170, 1171..1215, 1216..1260, 1261..1305, 1306..1350, 1351..1395, 1396..1440, 1441..1485, 1486..1530, 1531..1575, 1576..1620, 1621..1665, 1666..1710, 1711..1755, 1756..1800, 1801..1845, 1846..1890, 1891..1935, 1936..1980, 1981..2025, 2026..2070, 2071..2115, 2116..2160, 2161..2205, 2206..2250, 2251..2295, 2296..2340, 2341..2385, 2386..2430, 2431..2475, 2476..2520, 2521..2565, 2566..2610, 2611..2655, 2656..2700, 2701..2745, 2746..2790, 2791..2835, 2836..2880, 2881..2925, 2926..2970, 2971..3015, 3016..3060, 3061..3105, 3106..3150, 3151..3195, 3196..3240, 3241..3285, 3286..3330, 3331..3375, 3376..3420, 3421..3465, 3466..3510, 3511..3555, 3556..3600, 3601..3645, 3646..3690, 3691..3735, 3736..3780, 3781..3825, 3826..3870, 3871..3915, 3916..3960, 3961..4005, 4006..4050, 4051..4095, 4096..4140, 4141..4185, 4186..4230, 4231..4275, 4276..4320, 4321..4365, 4366..4410, 4411..4455, 4456..4500, 4501..4545, 4546..4590, 4591..4635, 4636..4680, 4681..4725, 4726..4770, 4771..4815, 4816..4860, 4861..4905, 4906..4950, 4951..4995, 4996..5040, 5041..5085, 5086..5130, 5131..5175, 5176..5220, 5221..5265, 5266..5310, 5311..5355, 5356..5400, 5401..5445, 5446..5490, 5491..5535, 5536..5580, 5581..5625, 5626..5670, 5671..5715, 5716..5760, 5761..5805, 5806..5850, 5851..5895, 5896..5940, 5941..5985, 5986..6030, 6031..6075, 6076..6120, 6121..6165, 6166..6210, 6211..6255, 6256..6300, 6301..6345, 6346..6390, 6391..6435, 6436..6480, 6481..6525, 6526..6570, 6571..6615, 6616..6660, 6661..6705, 6706..6750, 6751..6795, 6796..6840, 6841..6885, 6886..6930, 6931..6975, 6976..7020, 7021..7065, 7066..7110, 7111..7155, 7156..7200, 7201..7245, 7246..7290, 7291..7335, 7336..7380, 7381..7425, 7426..7470, 7471..7515, 7516..7560, 7561..7605, 7606..7650, 7651..7695, 7696..7740, 7741..7785, 7786..7830, 7831..7875, 7876..7920, 7921..7965, 7966..8010, 8011..8055, 8056..8100, 8101..8145, 8146..8190, 8191..8235, 8236..8280, 8281..8325, 8326..8370, 8371..8415, 8416..8460, 8461..8505, 8506..8550, 8551..8595, 8596..8640, 8641..8685, 8686..8730, 8731..8775, 8776..8820, 8821..8865, 8866..8910, 8911..8955, 8956..9000, 9001..9045, 9046..9090, 9091..9135, 9136..9180, 9181..9225, 9226..9270, 9271..9315, 9316..9360, 9361..9405, 9406..9450, 9451..9495, 9496..9540, 9541..9585, 9586..9630, 9631..9675, 9676..9720, 9721..9765, 9766..9810, 9811..9855, 9856..9900, 9901..9945, 9946..9990, 9991..10035, 10036..10080, 10081..10125, 10126..10170, 10171..10215, 10216..10260, 10261..10305, 10306..10350, 10351..10395, 10396..10440, 10441..10485, 10486..10530, 10531..10575, 10576..10620, 10621..10665, 10666..10710, 10711..10755, 10756..10800, 10801..10845, 10846..10890, 10891..10935, 10936..10980, 10981..11025, 11026..11070, 11071..11115, 11116..11160, 11161..11205, 11206..11250, 11251..11295, 11296..11340, 11341..11385, 11386..11430, 11431..11475, 11476..11520, 11521..11565, 11566..11610, 11611..11655, 11656..11700, 11701..11745, 11746..11790, 11791..11835, 11836..11880, 11881..11925, 11926..11970, 11971..12015, 12016..12060, 12061..12105, 12106..12150, 12151..12195, 12196..12240, 12241..12285, 12286..12330, 12331..12375, 12376..12420, 12421..12465, 12466..12510, 12511..12555, 12556..12600, 12601..12645, 12646..12690, 12691..12735, 12736..12780, 12781..12825, 12826..12870, 12871..12915, 12916..12960, 12961..13005, 13006..13050, 13051..13095, 13096..13140, 13141..13185, 13186..13230, 13231..13275, 13276..13320, 13321..13365, 13366..13410, 13411..13455, 13456..13500, 13501..13545, 13546..13590, 13591..13635, 13636..13680, 13681..13725, 13726..13770, 13771..13815, 13816..13860, 13861..13905, 13906..13950, 13951..13995, 13996..14040, 14041..14085, 14086..14130, 14131..14175, 14176..14220, 14221..14265, 14266..14310, 14311..14355, 14356..14400, 14401..14445, 14446..14490, 14491..14535, 14536..14580, 14581..14625, 14626..14670, 14671..14715, 14716..14760, 14761..14805, 14806..14850, 14851..14895, 14896..14940, 14941..14985, 14986..15030, 15031..15075, 15076..15120, 15121..15165, 15166..15210, 15211..15255, 15256..15300, 15301..15345, 15346..15390, 15391..15435, 15436..15480, 15481..15525, 15526..15570, 15571..15615, 15616..15660, 15661..15705, 15706..15750, 15751..15795, 15796..15840, 15841..15885, 15886..15930, 15931..15975, 15976..16020, 16021..16065, 16066..16110, 16111..16155, 16156..16200, 16201..16245, 16246..16290, 16291..16335, 16336..16380, 16381..16425, 16426..16470, 16471..16515, 16516..16560, 16561..16605, 16606..16650, 16651..16695, 16696..16740, 16741..16785, 16786..16830, 16831..16875, 16876..16920, 16921..16965, 16966..17010, 17011..17055, 17056..17100, 17101..17145, 17146..17190, 17191..17235, 17236..17280, 17281..17325, 17326..17370, 17371..17415, 17416..17460, 17461..17505, 17506..17550, 17551..17595, 17596..17640, 17641..17685, 17686..17730, 17731..17775, 17776..17820, 17821..17865, 17866..17910, 17911..17955, 17956..18000, 18001..18045, 18046..18090, 18091..18135, 18136..18180, 18181..18225, 18226..18270, 18271..18315, 18316..18360, 18361..18405, 18406..18450, 18451..18495, 18496..18540, 18541..18585, 18586..18630, 18631..18675, 18676..18720, 18721..18765, 18766..18810, 18811..18855, 18856..18900, 18901..18945, 18946..18990, 18991..19035, 19036..19080, 19081..19125, 19126..19170, 19171..19215, 19216..19260, 19261..19305, 19306..19350, 19351..19395, 19396..19440, 19441..19485, 19486..19530, 19531..19575, 19576..19620, 19621..19665, 19666..19710, 19711..19755, 19756..19800, 19801..19845, 19846..19890, 19891..19935, 19936..19980, 19981..20025, 20026..20070, 20071..20115, 20116..20160, 20161..20205, 20206..20250, 20251..20295, 20296..20340, 20341..20385, 20386..20430, 20431..20475, 20476..20520, 20521..20565, 20566..20610, 20611..20655, 20656..20700, 20701..20745, 20746..20790, 20791..20835, 20836..20880, 20881..20925, 20926..20970, 20971..21015, 21016..21060, 21061..21105, 21106..21150, 21151..21195, 21196..21240, 21241..21285, 21286..21330, 21331..21375, 21376..21420, 21421..21465, 21466..21510, 21511..21555, 21556..21600, 21601..21645, 21646..21690, 21691..21735, 21736..21780, 21781..21825, 21826..21870, 21871..21915, 21916..21960, 21961..22005, 22006..22050, 22051..22095, 22096..22140, 22141..22185, 22186..22230, 22231..22275, 22276..22320, 22321..22365, 22366..22410, 22411..22455, 22456..22500, 22501..22545, 22546..22590, 22591..22635, 22636..22680, 22681..22725, 22726..22770, 22771..22815, 22816..22860, 22861..22905, 22906..22950, 22951..22995, 22996..23040, 23041..23085, 23086..23130, 23131..23175, 23176..23220, 23221..23265, 23266..23310, 23311..23355, 23356..23400, 23401..23445, 23446..23490, 23491..23535, 23536..23580, 23581..23625, 23626..23670, 23671..23715, 23716..23760, 23761..23805, 23806..23850, 23851..23895, 23896..23940, 23941..23985, 23986..24030, 24031..24075, 24076..24120, 24121..24165, 24166..24210, 24211..24255, 24256..24300, 24301..24345, 24346..24390, 24391..24435, 24436..24480, 24481..24525, 24526..24570, 24571..24615, 24616..24660, 24661..24705, 24706..24750, 24751..24795, 24796..24840, 24841..24885, 24886..24930, 24931..24975
|