Get all terms on one side of the inequality (with 0 on the other side), and with a common denominator.
The critical points -- where numerator or denominator are 0, and therefore the only places where the function value can change sign -- are -26/3 and -4.
Choosing test points (or any other valid method) will show that the function value is positive to the left of -26/3 and to the right of -4; it is negative only between -26/3 and -4.
If you are graphing the solution set on a number line, the left endpoint -26/3 is included in the solution set because the numerator can be 0; the right endpoint is not included because the denominator cannot be 0.
So the solution set for the inequality in interval notation is [-26/3,-4).
The solution set of the inequality can be seen in a graph of the equation:
---------------Below here is faulty because accounting for both numerator AND denominator and critical x values must be done------------------------------
recheck for any mistakes, and continue...