SOLUTION: Prove the “ruler flipping lemma”: if f : l → R is a coordinate function for a line l, then the function f0, defined, for every point P ∈ l, by f0(P) = −f(P), is also a
Algebra ->
Geometry-proofs
-> SOLUTION: Prove the “ruler flipping lemma”: if f : l → R is a coordinate function for a line l, then the function f0, defined, for every point P ∈ l, by f0(P) = −f(P), is also a
Log On
Question 1166437: Prove the “ruler flipping lemma”: if f : l → R is a coordinate function for a line l, then the function f0, defined, for every point P ∈ l, by f0(P) = −f(P), is also a coordinate function for l.