SOLUTION: Cos20°-cos320°+cos100°

Algebra ->  Geometry-proofs -> SOLUTION: Cos20°-cos320°+cos100°       Log On


   



Question 1005639: Cos20°-cos320°+cos100°

Answer by ikleyn(52777) About Me  (Show Source):
You can put this solution on YOUR website!
.
Cos20°-cos320°+cos100°
----------------------------
Notice that cos(320°) = cos(40°).

Hence cos(20°) - cos(320°) = cos(20°) - cos(40°).

Now apply the formula cos%28alpha%29+-+cos%28beta%29 = -2%2Asin%28%28alpha%2Bbeta%29%2F2%29%2Asin%28%28alpha-beta%29%2F2%29 

    (see the lesson  Addition and subtraction of trigonometric functions  in this site). 

You will get cos(20°) - cos(320°) = cos(20°) - cos(40°) = -2*sin(30°)*sin(10°) = -2*sqrt%283%29%2F2.sin(10°) = -sqrt%283%29*sin(10°). 

Next, notice that the last addend, cos(100°) = -sin(10°).

It gives you the final result 

cos(20°) - cos(320°) + cos(100°) = -sqrt%283%29*sin(10°) - sin(10°) = -%28sqrt%283%29%2B1%29.sin(10°).