Tutors Answer Your Questions about Functions (FREE)
Question 1045240: Please help me with this. Detailed workings are very much appreciated, thanks!
The weekly demand and supply functions for a type of watch is given by
p=-0.1x^2-x+40 and p=0.1x^2+2x+20 respectively,
where p is measured in dollars and x is measured in units of a hundred. Find the equilibrium quantity and price.
Click here to see answer by Boreal(15235)  |
Question 1045240: Please help me with this. Detailed workings are very much appreciated, thanks!
The weekly demand and supply functions for a type of watch is given by
p=-0.1x^2-x+40 and p=0.1x^2+2x+20 respectively,
where p is measured in dollars and x is measured in units of a hundred. Find the equilibrium quantity and price.
Click here to see answer by MathTherapy(10552)  |
Question 1045671: A function $f$ has horizontal asymptote of $y = -4,$ a vertical asymptote of $x = 3,$ and an $x$-intercept at $(1,0).$
Part (a): Let $f$ be of the form
$$f(x) = \frac{ax+b}{x+c}.$$
Find an expression for $f(x).$
Part (b): Let $f$ be of the form
$$f(x) = \frac{rx+s}{2x+t}.$$
Find an expression for $f(x).$
Click here to see answer by Fombitz(32388)  |
Question 1045641: A videoke machine can be rented for 1,000 pesos for three days, but for the fourth day onwards, an additional cost of 400 pesos per day is added. Represent the cost of renting a videoke machine as a piece wise function of the number of days it is rented.
Click here to see answer by ewatrrr(24785)  |
Question 1045928: iam not understanding the question and in fact i have no idea how to solve it! plz help
let f(x)={ (x+2p if x<-2) }
{ (3px+q if x -2<=x<=1) }
{ (3x-2q if x>1) }
determine the values of p and q that make f continuous
Click here to see answer by ewatrrr(24785)  |
Question 1045981: A videoke machine can be rented for 1,000 pesos for three days, but for the fourth day onwards, an additional cost of 400 pesos per day is added. Represent the cost of renting a videoke machine as a piece wise function of the number of days it is rented.
Click here to see answer by josmiceli(19441)  |
Question 1046280: Prove the statement using the ε, δ definition of a limit.
lim x^2=0
x→0
Given ε > 0, we need δ > 0 such that if 0 < |x − 0| < δ, then |x2 − 0| < ε⇔ ____________ < ε ⇔
|x| < _____________. Take δ = ____________.Then 0 < |x − 0| < δ right double arrow implies
|x2 − 0| < ε. Thus,
lim
x→0 x^2 = 0 by the definition of a limit.
Click here to see answer by robertb(5830)  |
Question 1046530: A function f(x) contains points A, B, C, and D
A(-2,0)
B(0,2)
C(3,-1)
D(4,4)
The function is transformed to create g(x)
Such that g(x) = f (1/2 x) - 4.
Complete the table to show coordinates of points A', B', C', and D'
A'
B'
C'
D'
Click here to see answer by Edwin McCravy(20056)  |
Question 1046616: For each of the following, fill in the table of values.
a. f(X) = lxl
(It has all of the X values listed. They are as follows: -3, -2, -1, zero, one, two, three. I have to fill in the, that is the output: f(X). How do I do this?
b. F(X) = x^3
C. f(X) = 2^x
Click here to see answer by Alan3354(69443)  |
Question 1046604: If the following defines a one-to-one function, find the inverse.
{(6, 6), (12, 7), (10, 8), (8, 9)}
Possible Answer:
a. {(7, 6), (9, 10), (6, 10), (7, 8)}
b. {(7, 6), (6, 10), (6, 12), (7, 8)}
c. Not a one-to-one function
d. {(6, 6), (7, 12), (8, 10), (9, 8)}
Click here to see answer by MathLover1(20850)  |
|
Older solutions: 1..45, 46..90, 91..135, 136..180, 181..225, 226..270, 271..315, 316..360, 361..405, 406..450, 451..495, 496..540, 541..585, 586..630, 631..675, 676..720, 721..765, 766..810, 811..855, 856..900, 901..945, 946..990, 991..1035, 1036..1080, 1081..1125, 1126..1170, 1171..1215, 1216..1260, 1261..1305, 1306..1350, 1351..1395, 1396..1440, 1441..1485, 1486..1530, 1531..1575, 1576..1620, 1621..1665, 1666..1710, 1711..1755, 1756..1800, 1801..1845, 1846..1890, 1891..1935, 1936..1980, 1981..2025, 2026..2070, 2071..2115, 2116..2160, 2161..2205, 2206..2250, 2251..2295, 2296..2340, 2341..2385, 2386..2430, 2431..2475, 2476..2520, 2521..2565, 2566..2610, 2611..2655, 2656..2700, 2701..2745, 2746..2790, 2791..2835, 2836..2880, 2881..2925, 2926..2970, 2971..3015, 3016..3060, 3061..3105, 3106..3150, 3151..3195, 3196..3240, 3241..3285, 3286..3330, 3331..3375, 3376..3420, 3421..3465, 3466..3510, 3511..3555, 3556..3600, 3601..3645, 3646..3690, 3691..3735, 3736..3780, 3781..3825, 3826..3870, 3871..3915, 3916..3960, 3961..4005, 4006..4050, 4051..4095, 4096..4140, 4141..4185, 4186..4230, 4231..4275, 4276..4320, 4321..4365, 4366..4410, 4411..4455, 4456..4500, 4501..4545, 4546..4590, 4591..4635, 4636..4680, 4681..4725, 4726..4770, 4771..4815, 4816..4860, 4861..4905, 4906..4950, 4951..4995, 4996..5040, 5041..5085, 5086..5130, 5131..5175, 5176..5220, 5221..5265, 5266..5310, 5311..5355, 5356..5400, 5401..5445, 5446..5490, 5491..5535, 5536..5580, 5581..5625, 5626..5670, 5671..5715, 5716..5760, 5761..5805, 5806..5850, 5851..5895, 5896..5940, 5941..5985, 5986..6030, 6031..6075, 6076..6120, 6121..6165, 6166..6210, 6211..6255, 6256..6300, 6301..6345, 6346..6390, 6391..6435, 6436..6480, 6481..6525, 6526..6570, 6571..6615, 6616..6660, 6661..6705, 6706..6750, 6751..6795, 6796..6840, 6841..6885, 6886..6930, 6931..6975, 6976..7020, 7021..7065, 7066..7110, 7111..7155, 7156..7200, 7201..7245, 7246..7290, 7291..7335, 7336..7380, 7381..7425, 7426..7470, 7471..7515, 7516..7560, 7561..7605, 7606..7650, 7651..7695, 7696..7740, 7741..7785, 7786..7830, 7831..7875, 7876..7920, 7921..7965, 7966..8010, 8011..8055, 8056..8100, 8101..8145, 8146..8190, 8191..8235, 8236..8280, 8281..8325, 8326..8370, 8371..8415, 8416..8460, 8461..8505, 8506..8550, 8551..8595, 8596..8640, 8641..8685, 8686..8730, 8731..8775, 8776..8820, 8821..8865, 8866..8910, 8911..8955, 8956..9000, 9001..9045, 9046..9090, 9091..9135, 9136..9180, 9181..9225, 9226..9270, 9271..9315, 9316..9360, 9361..9405, 9406..9450, 9451..9495, 9496..9540, 9541..9585, 9586..9630, 9631..9675, 9676..9720, 9721..9765, 9766..9810, 9811..9855, 9856..9900, 9901..9945, 9946..9990, 9991..10035, 10036..10080, 10081..10125, 10126..10170, 10171..10215, 10216..10260, 10261..10305, 10306..10350, 10351..10395, 10396..10440, 10441..10485, 10486..10530, 10531..10575, 10576..10620, 10621..10665, 10666..10710, 10711..10755, 10756..10800, 10801..10845, 10846..10890, 10891..10935, 10936..10980, 10981..11025, 11026..11070, 11071..11115, 11116..11160, 11161..11205, 11206..11250, 11251..11295, 11296..11340, 11341..11385, 11386..11430, 11431..11475, 11476..11520, 11521..11565, 11566..11610, 11611..11655, 11656..11700, 11701..11745, 11746..11790, 11791..11835, 11836..11880, 11881..11925, 11926..11970, 11971..12015, 12016..12060, 12061..12105, 12106..12150, 12151..12195, 12196..12240, 12241..12285, 12286..12330, 12331..12375, 12376..12420, 12421..12465, 12466..12510, 12511..12555, 12556..12600, 12601..12645, 12646..12690, 12691..12735, 12736..12780, 12781..12825, 12826..12870, 12871..12915, 12916..12960, 12961..13005, 13006..13050, 13051..13095, 13096..13140, 13141..13185, 13186..13230, 13231..13275, 13276..13320, 13321..13365, 13366..13410, 13411..13455, 13456..13500, 13501..13545, 13546..13590, 13591..13635, 13636..13680, 13681..13725, 13726..13770, 13771..13815, 13816..13860, 13861..13905, 13906..13950, 13951..13995, 13996..14040, 14041..14085, 14086..14130, 14131..14175, 14176..14220, 14221..14265, 14266..14310, 14311..14355, 14356..14400, 14401..14445, 14446..14490, 14491..14535, 14536..14580, 14581..14625, 14626..14670, 14671..14715, 14716..14760, 14761..14805, 14806..14850, 14851..14895, 14896..14940, 14941..14985, 14986..15030, 15031..15075, 15076..15120, 15121..15165, 15166..15210, 15211..15255, 15256..15300, 15301..15345, 15346..15390, 15391..15435, 15436..15480, 15481..15525, 15526..15570, 15571..15615, 15616..15660
|