SOLUTION: How would I determine if the relation is even, odd, or neither? 1. f|x| = |x| - x^2 + 1 2. f(x) = 4x^2 - 4x + 4 3. y = e^x - 1/e^x 4. 3y^3 = 4x^3 + 1 5. 3x = |y|

Algebra ->  Functions -> SOLUTION: How would I determine if the relation is even, odd, or neither? 1. f|x| = |x| - x^2 + 1 2. f(x) = 4x^2 - 4x + 4 3. y = e^x - 1/e^x 4. 3y^3 = 4x^3 + 1 5. 3x = |y|      Log On


   



Question 638593: How would I determine if the relation is even, odd, or neither?
1. f|x| = |x| - x^2 + 1
2. f(x) = 4x^2 - 4x + 4
3. y = e^x - 1/e^x
4. 3y^3 = 4x^3 + 1
5. 3x = |y|

Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
even if f(x) = f(-x)
odd if f(x) = -f(-x)
otherwise f is neither.
==========================
Cheers,
Stan H.
==============