SOLUTION: Use interval notation to indicate the domain of f(x)=4\sqrt(x^(2-)8x) and g(x)= 5\sqrt(5x^(2)-14x) The domain of f(x) is The domain of g(x) is

Algebra ->  Functions -> SOLUTION: Use interval notation to indicate the domain of f(x)=4\sqrt(x^(2-)8x) and g(x)= 5\sqrt(5x^(2)-14x) The domain of f(x) is The domain of g(x) is       Log On


   



Question 1165088: Use interval notation to indicate the domain of
f(x)=4\sqrt(x^(2-)8x)
and
g(x)= 5\sqrt(5x^(2)-14x)
The domain of f(x) is
The domain of g(x) is

Answer by MathLover1(20854) About Me  (Show Source):
You can put this solution on YOUR website!
assuming you are given f%28x%29=4sqrt%28x%5E2-8x%29 and g%28x%29=+5sqrt%285x%5E2-14x%29

to find the domain of
f%28x%29=4sqrt%28x%5E2-8x%29
look for restrictions: Check for values that make the function undefined (e.g., division by zero).
will be if
x%5E2-8x=0%29+=> x%5E2=8x=>x=8 or x=0
Consider square roots: Ensure the expression under any square root is non-negative.
sqrt%28x%5E2-8x%29%3E0
x%5E2-8x%3E0
x%5E2%3E8x
x%3E8
so, the domain is:
(-infinity, 0] U [8, infinity)
or
{ x element of R| x%3C=0, x%3E=8 }


g%28x%29=+5sqrt%285x%5E2-14x%29...........find it same way as above
(-infinity, 0] U [14%2F5,+infinity)
{ x element R : x%3C=0 or x%3E=14%2F5 }