SOLUTION: What makes this statement false? if {{{ f(x) = x + 1 }}} and {{{ g(x) = 6x }}} then (f ○ g)(x) = (g ○ f) {{{ (x) }}}

Algebra ->  Functions -> SOLUTION: What makes this statement false? if {{{ f(x) = x + 1 }}} and {{{ g(x) = 6x }}} then (f ○ g)(x) = (g ○ f) {{{ (x) }}}      Log On


   



Question 1048069: What makes this statement false?
if +f%28x%29+=+x+%2B+1+ and +g%28x%29+=+6x+ then (f ○ g)(x) = (g ○ f) +%28x%29+

Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
What makes this statement false?
if f(x) = x + 1 and g(x) = 6x then (fog)(x) = (gof)(x)
-------------------
fog(x) = f[g(x)] = f(6x) = 6x+1
-----------------
gof(x) = g[f(x)] = g(x+1) = 6(x+1) = 6x+6
--------------------
Ans: 6x+1 is not equal to 6x+6
-----------------
Cheers,
Stan H.
-----------