SOLUTION: What makes this statement true or false? If {{{ f(x) = x + 1 }}} and {{{ g(x) = 6x }}} then (f ○ g)(x) = (g ○ f) {{{ (x) }}}

Algebra ->  Functions -> SOLUTION: What makes this statement true or false? If {{{ f(x) = x + 1 }}} and {{{ g(x) = 6x }}} then (f ○ g)(x) = (g ○ f) {{{ (x) }}}       Log On


   



Question 1048038: What makes this statement true or false?
If +f%28x%29+=+x+%2B+1+ and +g%28x%29+=+6x+ then (f ○ g)(x) = (g ○ f) +%28x%29+

Answer by ikleyn(52797) About Me  (Show Source):
You can put this solution on YOUR website!
.
highlight%28cross%28What_makes%29%29 Is this statement true or false?
If +f%28x%29+=+x+%2B+1+ and +g%28x%29+=+6x+ then (f ○ g)(x) = (g ○ f) +%28x%29+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

False.