.
We consider two cases.
Case 1. Let x >= 1.
Then x-1 >= 0; hence, |x-1| = x - 1;
then y = f(x) = -3*(x-1) - 3 = - 3x + 3 - 3 = - 3x.
Case 2. Let x < 1.
Then x-1 <= 0; hence, |x-1| = -(x - 1);
then y = g(x) = -3*(-(x-1)) - 3 = 3(x -1) - 3 = 3x - 6.
ANSWER. If x>=1, then y = f(x) = - 3x.
If x < 1, then y = g(x) = 3x-6.
Solved, answered and explained.