SOLUTION: 1. P ⊃ (G ⊃ T) 2. Q ⊃ (T ⊃ E) 3. P 4. Q / G ⊃ E 1. ∼S ⊃ D 2. ∼S ∨ (∼D ⊃ K) 3. ∼D / K 1. N ⊃ (J ⊃ P) 2. (J ⊃ P) ⊃ (N ⊃ J) 3. N / P

Algebra ->  Finite-and-infinite-sets -> SOLUTION: 1. P ⊃ (G ⊃ T) 2. Q ⊃ (T ⊃ E) 3. P 4. Q / G ⊃ E 1. ∼S ⊃ D 2. ∼S ∨ (∼D ⊃ K) 3. ∼D / K 1. N ⊃ (J ⊃ P) 2. (J ⊃ P) ⊃ (N ⊃ J) 3. N / P       Log On


   



Question 1201171: 1. P ⊃ (G ⊃ T) 2. Q ⊃ (T ⊃ E) 3. P 4. Q / G ⊃ E

1. ∼S ⊃ D 2. ∼S ∨ (∼D ⊃ K) 3. ∼D / K

1. N ⊃ (J ⊃ P) 2. (J ⊃ P) ⊃ (N ⊃ J) 3. N / P

Need these three problems solved with rules of inference.

Answer by math_helper(2461) About Me  (Show Source):
You can put this solution on YOUR website!

First problem
-------------
1. P-->(G-->T) Premise
2. Q-->(T-->E) Premise
3. P Premise
4. Q Premise
// show G-->E
5. G-->T 3,1 Modus Ponens (MP)
6. T-->E 4,2 MP
7. G-->E 5,6 Hypothetical Syllogism (HS)
*** done ***

Second problem (Learn from the other two solutions, and you should
be able to easily fill in steps 4 and 5).
-----------------------------------------
1. ~S-->D Premise
2. ~Sv(~D-->K) Premise
3. ~D Premise
// show K
4. 3,1 Modus Tollens (MT)
5. 4,2 Disjunctive Syllogism (DS)
6. K 3,5 Modus Ponens (MP)
*** done ***
Third problem
-------------
1. N-->(J-->P) Premise
2. (J-->P)-->(N-->J) Premise
3. N Premise
// show P
4. J-->P 3,1 Modus Ponens (MP)
5. N-->J 4,2 MP
6. J 3,5 MP
7. P 6,4 MP
*** done ***
If you have questions, send via the 'thank you' form.