SOLUTION: Sam jogged to Larry's house at 8 miles per hour and borrowed Larry's scooter, riding back at 20 miles per hour. If the round trip took 7 hours, how far is it to Larry's house? Wri

Algebra ->  Finance -> SOLUTION: Sam jogged to Larry's house at 8 miles per hour and borrowed Larry's scooter, riding back at 20 miles per hour. If the round trip took 7 hours, how far is it to Larry's house? Wri      Log On


   



Question 1190897: Sam jogged to Larry's house at 8 miles per hour and borrowed Larry's scooter, riding back at 20 miles per hour. If the round trip took 7 hours, how far is it to Larry's house? Write a distance equation
Found 6 solutions by ikleyn, Theo, Alan3354, greenestamps, MathTherapy, josgarithmetic:
Answer by ikleyn(52781) About Me  (Show Source):
You can put this solution on YOUR website!
.
Sam jogged to Larry's house at 8 miles per hour and borrowed Larry's scooter,
riding back at 20 miles per hour. If the round trip took 7 hours, how far
is it to Larry's house? Write a distance equation
~~~~~~~~~~~~~~~~

Let t be the time moving at 8 miles per hour.

Then the time moving back at 20 mph is 7-t hours.


The distance equation is

    8t = 20*(7-t).


Simplify and find t

    8t = 140 - 20t

    8t + 20t = 140

       28t   = 140

         t   = 140/28 = 5 hours.


The Larry's house is  8*5 = 40 miles apart.      ANSWER

Solved.

------------------

For simple Travel & Distance problems,  see introductory lessons
    - Travel and Distance problems
    - Travel and Distance problems for two bodies moving in opposite directions
    - Travel and Distance problems for two bodies moving in the same direction (catching up)
in this site.

They are written specially for you.

You will find the solutions of many similar problems there.

Read them and learn once and for all from these lessons on how to solve simple Travel and Distance problems.

Become an expert in this area.




Answer by Theo(13342) About Me  (Show Source):
You can put this solution on YOUR website!
rate * time = distance
for sam jogging:
rate * time = distance becomes 8 * x = distance
x = the time it took him to get to larry's home.
for sam riding back on larry's scooter:
rate * time = distance becomes 20 * y = distance.
y = the time it took him to get home.
your original two equations are:
8 * x = distance
20 * y = distance
the total time for the round trip was 7 hours.
this means that x + y = 7
solve for y to get:
y = 7 - x
the equations becomes:
for sam jogging:
8 * x = distance
for sam riding larry's scooter:
20 * (7 - x) = distance
your two equations are now:
8 * x = distance
20 * (7 - x) = distance
simplify the second equation and leave the first equation as is to get:
8 * x = distance
140 - 20 * x = distance
since distance = 8 * x in the first equation, replace distance with that in the second equation to get:
140 - 20 * x = 8 * x
add 20 * x to both sides to get:
140 = 28 * x
divide both sides by 28 to get:
5 = x
since x + y = 7, then y must be equal to 2.
your two original equations were:
8 * x = distance
20 * y = distance
replace x with 5 and y with 2 to get:
8 * 5 = 40
20 * 2 = 40
the distance is equal to 40 miles each way.
that would be a total of 80 miles round trip.
if you had added the distances together, then the round trip equation would have been:
8 * x + 20 * y = 80
with x = 5 and y = 2, the equation would have bvecome:
8 * 5 + 20 * 2 = 80
simplify to get:
40 + 40 = 80 which becomes 80 = 80, confirming the values of x and y are good.


Answer by Alan3354(69443) About Me  (Show Source):
You can put this solution on YOUR website!
Sam jogged to Larry's house at 8 miles per hour and borrowed Larry's scooter, riding back at 20 miles per hour. If the round trip took 7 hours, how far is it to Larry's house? Write a distance equation
-----------------
The average speed of a round trip is 2%2Ar%5B1%5D%2Ar%5B2%5D%2F%28r%5B1%5D%2Br%5B2%5D%29 where r1 and r2 are the 2 speeds.
----------
= 2*8*20/(8+20) = 320/28 = 80/7 mi/hr
------
d = r*t = (80/7)*7 = 80 miles RT, 40 miles each way
======================
The formula is similar to parallel work, parallel resistance, etc. and is easy to remember.

Answer by greenestamps(13200) About Me  (Show Source):
You can put this solution on YOUR website!


Ignoring the "write a distance equation" instruction in your post, here is a fast and easy way to solve this kind of problem.

The ratio of speeds for the two legs of the trip is 8:20 = 2:5.

Since the distances for the two legs are the same, that means the ratio of times spent at the two speeds is 5:2.

Since the total time was 7 hours and the ratio of times on the two legs is 5:2, he spent 5 hours jogging and 2 hours riding.

So the distance on each leg is 5*8=40 miles, or 2*20=40 miles.


Answer by MathTherapy(10552) About Me  (Show Source):
You can put this solution on YOUR website!

Sam jogged to Larry's house at 8 miles per hour and borrowed Larry's scooter, riding back at 20 miles per hour. If the round trip took 7 hours, how far is it to Larry's house? Write a distance equation
A more appropriate equation to form in order to get straight to the answer is one of TIME.
Let distance to Larry's house be D
Then we get the following TIME equation: matrix%281%2C3%2C+D%2F8+%2B+D%2F20%2C+%22=%22%2C+7%29
5D + 2D = 280 ------ Multiplying by LCD, 40
7D = 280
Distance to Larry's house, or highlight_green%28matrix%281%2C6%2C+D%2C+%22=%22%2C+280%2F7%2C+%22=%22%2C+40%2C+miles%29%29

Answer by josgarithmetic(39617) About Me  (Show Source):
You can put this solution on YOUR website!
            SPEED         TIME           DISTANCE

jogged         8           d/8              d

scooter       20           d/20             d

TOTAL                         7

highlight_green%28d%2F8%2Bd%2F20=7%29
.
.