Let I = u = cos(x) dv = e-xdx du = -sin(x) v = -e-x I = uv - ∫vdu = cos(x)[-e-x] - ∫[-e-x][-sin(x)] I = -e-xcos(x) - ∫e-xsin(x)dx Let J = , then I = -e-xcos(x) - J Now we find J: J = u = sin(x) dv = e-xdx du = cos(x) v = -e-x J = uv - ∫vdu = sin(x)[-e-x] - ∫[-e-x][cos(x)] J = -e-xsin(x) - ∫e-xcos(x) J = uv - ∫vdu = sin(x)[-e-x] - ∫[-e-x][cos(x)] J = -e-xsin(x) + ∫e-xcos(x) J = -e-xsin(x) + I Substitute that for J in I = -e-xcos(x) - J I = -e-xcos(x) -(-e-xsin(x) + I) I = -e-xcos(x) + e-xsin(x) - I 2I = -e-xcos(x) + e-xsin(x) 2I = e-x[-cos(x) + sin(x)] 2I = e-x[sin(x) - cos(x)] Final answer: Edwin