You can put this solution on YOUR website! .......eq.1 .......eq.2
-----------------------
you are given a system of two linear equations and you need to find and that make true both equations, and that will be coordinates of the point where these two lines intersect
.......eq.1 .......eq.2....both side multiply by
-----------------------
.......eq.1 .......eq.2
----------------------- ------subtract eq.2 from eq.1
substitute for in one of the given equations and solve for .......eq.2
so, solution to your system is:(,)
You can put this solution on YOUR website! 2x+3y=0
x+2y=-1 Solve for x.
x=-1-2y Substitute in first equation for x.
2(-1-2y)+3y=0
-2-4y+3y=0 Add 2 to each side
-y=2 Multiply each side by -1.
y=-2 ANSWER 1: y=-2 Use this value of y to back solve one of the original equations.
2x+3y=0
2x+3(-2)=0
2x-6=0 Add 6 to each side.
2x=6 Divide each side by 2.
x=3 ANSWER 2: x=3 The solution to the system of equations is (3,-2).
CHECK:
Use equation not used for back solving:
x+2y=-1
3+2(-2)=-1
3-4=-1
-1=-1