Question 245958: g(x) = √( x - 1) + √(2x), find all values of x for which g(x) = 6
Answer by stanbon(75887) (Show Source):
You can put this solution on YOUR website! g(x) = √( x - 1) + √(2x), find all values of x for which g(x) = 6
------------------------------
Substitute to get:
sqrt(x-1) + sqrt(2x) = 6
---
Square both sides to get:
(x-1) + 2(sqrt(2x(x-1)) + 2x = 36
------------
2sqrt(2x^2-2x) + 3x -1 = 36
2sqrt(2x^2-2x) = -(3x-37)
Square both sides to get:
4[2x^2-2x] = 9x^2-222x+1369
8x^2-8x = 9x^2-222x+1369
x^2 - 214x + 1369 = 0
---
I graphed the equation to find the solutions to get:
x = 6.601 or x = 207.40
-------------
x=207.4 is an extraneous solution.
---------------
Solution:
x = 6.601
==========================================
Cheers,
Stan H.
|
|
|