Tutors Answer Your Questions about Expressions-with-variables (FREE)
Question 612274: I have two algebra I word problems i need help setting up. I would like if you can explain the steps of setting up.
Here it is:
Problem #1
The length of a rectangle is 2 1/2 times its width. Its area is 90 square units. What are its dimensions? (Hint: length times width = area)
Let w= width in units.
L=(2 1/2)w= 5w/2 = length in units
Click here to see answer by MathTherapy(10579)  |
Question 747745: Some of Aaron's friends are planning to buy him a gift worth 270, dividing the cost equally among themselves. Six more of his friends decided to share in the expenses and so each one's share is decreased by 12. How many friends were originally part of the plan?
Click here to see answer by ikleyn(53339)  |
Question 479860: I am working on my math packet for school. I came across a section in it, in which i completely forgot how to do. i asked my family and they helped me on most of the problems but they couldn't help me figure this one out.
I am suppose to determine the answer for each problem. Simplify when possible:
Here is the equation:
I've tried combining the "x"s and I have also tried using the order of operations but no matter what i use, it seems like i can't solve it.
If you could go through each step and explain what you did and why you did it, i would make it much easier for me to understand and i would greatly appreciate it.
Click here to see answer by ikleyn(53339)  |
Question 1209926: (a) Let x, y, and z be positive real numbers. Find the largest possible value of
\sqrt{\frac{3x + 5y + 2z}{6x + 5y + 4z}} + \sqrt{\frac{2x + 5y + z}{6x + 5y + 5z}} + \sqrt{\frac{9x + y + 4z}{6x + 5y + 4z}}.
(b) Find \frac{z}{x} if (x,y,z) is a triple that gives the maximum value in Part (a).
Click here to see answer by mccravyedwin(417)  |
Question 1209926: (a) Let x, y, and z be positive real numbers. Find the largest possible value of
\sqrt{\frac{3x + 5y + 2z}{6x + 5y + 4z}} + \sqrt{\frac{2x + 5y + z}{6x + 5y + 5z}} + \sqrt{\frac{9x + y + 4z}{6x + 5y + 4z}}.
(b) Find \frac{z}{x} if (x,y,z) is a triple that gives the maximum value in Part (a).
Click here to see answer by ikleyn(53339)  |
Question 1209926: (a) Let x, y, and z be positive real numbers. Find the largest possible value of
\sqrt{\frac{3x + 5y + 2z}{6x + 5y + 4z}} + \sqrt{\frac{2x + 5y + z}{6x + 5y + 5z}} + \sqrt{\frac{9x + y + 4z}{6x + 5y + 4z}}.
(b) Find \frac{z}{x} if (x,y,z) is a triple that gives the maximum value in Part (a).
Click here to see answer by Edwin McCravy(20077)  |
Question 1209927: The real numbers x_1, x_2, x_3, x_4, and x_5 satisfy
x_1 + x_2 + x_3 + x_4 + x_5 = 8,
x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 = 12,
x_1^3 + x_2^3 + x_3^3 + x_4^3 + x_5^3 = 16.
Let m be the smallest possible value of x_5, and let M be the largest possible value of x_5. Enter the ordered pair (m,M).
Click here to see answer by CPhill(2138)  |
Question 1179440: In Exercises 1 - 3, Monica is at a bowling center. By becoming a member for
$30, she gets a 15% discount on her bowling cost.
Build a function-machine network using the nonmember bowling cost as
the input. The output is Monica’s bowling cost with membership.
Suppose b is the cost of one night’s bowling for nonmembers. Find a rule
for M(b), Monica’s discounted cost. Do not include the membership fee.
Click here to see answer by ikleyn(53339)  |
Question 1179440: In Exercises 1 - 3, Monica is at a bowling center. By becoming a member for
$30, she gets a 15% discount on her bowling cost.
Build a function-machine network using the nonmember bowling cost as
the input. The output is Monica’s bowling cost with membership.
Suppose b is the cost of one night’s bowling for nonmembers. Find a rule
for M(b), Monica’s discounted cost. Do not include the membership fee.
Click here to see answer by CPhill(2138)  |
Question 1185331: Find the inverse Laplace transform f(t)=L^(−1){F(s)} of the function
F(s)=(e^(−s)(6s−5))/(s^2+64)
You may use h(t) for the Heaviside step function.
f(t)=L^(−1){(e^(−s)(6s−5))/(s^2+64)}=
My answer is h(t-1)(6cos(8h(t-1)))-5/8sin(8h(t-1)) , wrong
Click here to see answer by CPhill(2138)  |
|
Older solutions: 1..45, 46..90, 91..135, 136..180, 181..225, 226..270, 271..315, 316..360, 361..405, 406..450, 451..495, 496..540, 541..585, 586..630, 631..675, 676..720, 721..765, 766..810, 811..855, 856..900, 901..945, 946..990, 991..1035, 1036..1080, 1081..1125, 1126..1170, 1171..1215, 1216..1260, 1261..1305, 1306..1350, 1351..1395, 1396..1440, 1441..1485, 1486..1530, 1531..1575, 1576..1620, 1621..1665, 1666..1710, 1711..1755, 1756..1800, 1801..1845, 1846..1890, 1891..1935, 1936..1980, 1981..2025, 2026..2070, 2071..2115, 2116..2160, 2161..2205, 2206..2250, 2251..2295, 2296..2340, 2341..2385, 2386..2430, 2431..2475, 2476..2520, 2521..2565, 2566..2610, 2611..2655, 2656..2700, 2701..2745, 2746..2790, 2791..2835, 2836..2880, 2881..2925, 2926..2970, 2971..3015, 3016..3060, 3061..3105, 3106..3150, 3151..3195, 3196..3240, 3241..3285, 3286..3330, 3331..3375, 3376..3420, 3421..3465, 3466..3510, 3511..3555, 3556..3600, 3601..3645, 3646..3690, 3691..3735, 3736..3780, 3781..3825, 3826..3870, 3871..3915, 3916..3960, 3961..4005, 4006..4050, 4051..4095, 4096..4140, 4141..4185, 4186..4230, 4231..4275, 4276..4320, 4321..4365, 4366..4410, 4411..4455, 4456..4500, 4501..4545, 4546..4590, 4591..4635, 4636..4680, 4681..4725, 4726..4770, 4771..4815, 4816..4860, 4861..4905, 4906..4950, 4951..4995, 4996..5040, 5041..5085, 5086..5130, 5131..5175, 5176..5220, 5221..5265, 5266..5310, 5311..5355, 5356..5400, 5401..5445, 5446..5490, 5491..5535, 5536..5580, 5581..5625, 5626..5670, 5671..5715, 5716..5760, 5761..5805, 5806..5850, 5851..5895, 5896..5940, 5941..5985, 5986..6030, 6031..6075, 6076..6120, 6121..6165, 6166..6210, 6211..6255, 6256..6300, 6301..6345, 6346..6390, 6391..6435, 6436..6480, 6481..6525, 6526..6570, 6571..6615, 6616..6660, 6661..6705, 6706..6750, 6751..6795, 6796..6840, 6841..6885, 6886..6930, 6931..6975, 6976..7020, 7021..7065, 7066..7110, 7111..7155, 7156..7200, 7201..7245, 7246..7290, 7291..7335, 7336..7380, 7381..7425, 7426..7470, 7471..7515, 7516..7560, 7561..7605, 7606..7650, 7651..7695, 7696..7740, 7741..7785, 7786..7830, 7831..7875, 7876..7920, 7921..7965, 7966..8010, 8011..8055, 8056..8100, 8101..8145, 8146..8190, 8191..8235, 8236..8280, 8281..8325, 8326..8370, 8371..8415, 8416..8460, 8461..8505, 8506..8550, 8551..8595, 8596..8640, 8641..8685, 8686..8730, 8731..8775, 8776..8820, 8821..8865, 8866..8910, 8911..8955, 8956..9000, 9001..9045, 9046..9090, 9091..9135, 9136..9180, 9181..9225, 9226..9270, 9271..9315, 9316..9360, 9361..9405, 9406..9450, 9451..9495, 9496..9540, 9541..9585, 9586..9630, 9631..9675, 9676..9720, 9721..9765, 9766..9810, 9811..9855, 9856..9900, 9901..9945, 9946..9990, 9991..10035, 10036..10080, 10081..10125, 10126..10170, 10171..10215, 10216..10260, 10261..10305, 10306..10350, 10351..10395, 10396..10440, 10441..10485, 10486..10530, 10531..10575, 10576..10620, 10621..10665, 10666..10710, 10711..10755, 10756..10800, 10801..10845, 10846..10890, 10891..10935, 10936..10980, 10981..11025, 11026..11070, 11071..11115, 11116..11160, 11161..11205, 11206..11250, 11251..11295, 11296..11340, 11341..11385, 11386..11430, 11431..11475, 11476..11520, 11521..11565, 11566..11610, 11611..11655, 11656..11700, 11701..11745, 11746..11790, 11791..11835, 11836..11880, 11881..11925, 11926..11970, 11971..12015, 12016..12060, 12061..12105, 12106..12150, 12151..12195, 12196..12240, 12241..12285, 12286..12330, 12331..12375, 12376..12420, 12421..12465, 12466..12510, 12511..12555, 12556..12600, 12601..12645, 12646..12690, 12691..12735, 12736..12780, 12781..12825, 12826..12870, 12871..12915, 12916..12960, 12961..13005, 13006..13050, 13051..13095, 13096..13140, 13141..13185, 13186..13230, 13231..13275, 13276..13320, 13321..13365, 13366..13410, 13411..13455, 13456..13500, 13501..13545, 13546..13590, 13591..13635, 13636..13680, 13681..13725, 13726..13770, 13771..13815, 13816..13860, 13861..13905, 13906..13950, 13951..13995, 13996..14040, 14041..14085, 14086..14130, 14131..14175, 14176..14220, 14221..14265, 14266..14310, 14311..14355, 14356..14400, 14401..14445, 14446..14490, 14491..14535, 14536..14580, 14581..14625, 14626..14670, 14671..14715, 14716..14760, 14761..14805, 14806..14850, 14851..14895, 14896..14940, 14941..14985, 14986..15030, 15031..15075, 15076..15120, 15121..15165, 15166..15210, 15211..15255, 15256..15300, 15301..15345, 15346..15390
|