SOLUTION: solve for x log(x+8)-log(x)=1 {{{ sqrt (3)^(x+1) = 9^(6x-1) }}}

Algebra ->  Exponential-and-logarithmic-functions -> SOLUTION: solve for x log(x+8)-log(x)=1 {{{ sqrt (3)^(x+1) = 9^(6x-1) }}}       Log On


   



Question 760450: solve for x
log(x+8)-log(x)=1
++sqrt+%283%29%5E%28x%2B1%29+=+9%5E%286x-1%29++++

Answer by lwsshak3(11628) About Me  (Show Source):
You can put this solution on YOUR website!
solve for x
log(x+8)-log(x)=1
log%28%28x%2B8%29%2F%28x%29%29=1=log%2810%29
(x+8)/x=10
10x=x+8
9x=8
x=8/9
check:
log(x+8)=log(8/9+8)≈0.0.9488
log(x)=log(8/9)≈-0.0511
0.0.9488-(-0.0511)≈0.9999..
..
sqrt+%283%29%5E%28x%2B1%29+=+9%5E%286x-1%29
%283%29%5E%28%28x%2B1%29%2F2%29+=+3%5E%282%2A%286x-1%29%29
%283%29%5E%28%28x%2B1%29%2F2%29+=+3%5E%2812x-2%29%29
((x+1)/2)=12x-2
x+1=24x-4
23x=5
x=5/23
check:
√(3^(x+1))=√(3^(5/23+1))=√(3^(1.2174))=√3.8093)≈1.9517
9^(6x-1)=9^(30/23-1)=9^0.3043≈1.9517